题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004

题意:三种颜色的扑克牌各有Sr,Sb,Sg张。给出m种置换。两种染色方案在某种置换下相同时认为是一种。有多少种不同的排列?

思路:利用Burnside引理计算的两个步骤:

(1)找出所有的置换,在这里我们很容易认为只有m种,其实是m+1种,不动置换也是一种。坑爹。。

(2)求出每种置换下不动点个数。也就是对于每一种置换,我们要找出在这种置换下哪些排列在置换后还是这样。那么首先我们求出这种置换的循环节,那么在同一个循环节下的必然全部是同一种颜色的才能保证置换后不变。比如现在三种花色的分别为2,3,4,

置换为:1,3,2,5,6,4,8,9,7,此时置换节为(1)(2,3)(4,5,6)(7,8,9)也就是(1)(2)(3)(3),那么问题转化成用1,2,3,3拼成2,3,4三个数的方案数。设dp[i][j][k]表示得到三种花色分别为i,j,k的方案数,我们设a[1]=1,a[2]=2,a[3]=3,a[4]=3(也就是循环节),那么dp(i,j,k)=sum(dp(i-a[x],j,k)+dp(i,j-a[x],k)+dp(i,j,k-a[x]))(1<=x<=4且a[x]之前未被使用过)。

int Sr,Sb,Sg,m,mod,a[N][N],n;

int C[N][N],p[N];

void init()
{
    int i,j;
    for(i=0;i<=60;i++)
    {
        C[i][0]=C[i][i]=1;
        for(j=1;j<i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
    }
    p[0]=1;
    for(i=1;i<=100;i++) p[i]=p[i-1]*i%mod;
}

int exGcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1; y=0;
        return a;
    }
    int temp=exGcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return temp;
}

int get(int n)
{
    int x,y;
    exGcd(n,mod,x,y);
    return (x%mod+mod)%mod;
}

int A[N],Anum,dp[N][N][N],visit[N];

int DFS(int x,int y,int z)
{
    if(x==0&&y==0&&z==0) return 1;
    if(x<0||y<0||z<0) return 0;
    if(dp[x][y][z]!=-1) return dp[x][y][z];
    int ans=0,i;
    FOR1(i,Anum) if(!visit[i])
    {
        visit[i]=1;
        ans+=DFS(x-A[i],y,z)+DFS(x,y-A[i],z)+DFS(x,y,z-A[i]);
        ans%=mod;
        visit[i]=0;
    }
    return dp[x][y][z]=ans;
}

int cal(int a[])
{
    Anum=0;
    int h[N]={0},i,j;
    FOR1(i,n) if(!h[a[i]])
    {
        Anum++;
        j=a[i]; h[i]=1; A[Anum]=1;
        while(j!=i) h[j]=1,j=a[j],A[Anum]++;
    }
    clr(dp,-1); clr(visit,0);
    return DFS(Sr,Sb,Sg);
}

int main()
{
    RD(Sr,Sb,Sg); RD(m,mod); init();
    n=Sr+Sb+Sg;
    int i,j;
    FOR1(i,m) FOR1(j,n) RD(a[i][j]);
    int ans=0;
    FOR1(i,m) ans=(ans+cal(a[i]))%mod;
    ans+=p[n]*get(p[Sr])*get(p[Sb])%mod*get(p[Sg])%mod;
    ans=ans*get(m+1)%mod;
    PR(ans);
    return 0;
}

BZOJ 1004 Cards(Burnside引理+DP)的更多相关文章

  1. BZOJ 1004 Cards(Burnside引理+DP)

    因为有着色数的限制,故使用Burnside引理. 添加一个元置换(1,2,,,n)形成m+1种置换,对于每个置换求出循环节的个数, 每个循环节的长度. 则ans=sigma(f(i))/(m+1) % ...

  2. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  3. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  4. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  5. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  6. bzoj 1004 burnside 引理+DP

    对于burnside引理需要枚举染色,这道题属于burnside的一种简单求解的方法,就是polya,我们可以使每一种置换中的循环节中的元素的颜色都相同,那么这样的话就可以直接DP了,我们可以将m个置 ...

  7. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  8. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  9. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

随机推荐

  1. 【iOS】屏幕旋转,屏幕自适应方向变化

    1. iOS有四个方向的旋转,为了保证自己的代码能够支持旋转,我们必须首先处理一个函数: - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInter ...

  2. iOS定位服务编程详解

    现在的移动设备很多都提供定位服务,使用iOS系统的iPhone.iPod Touch和iPad都可以提供位置服务,iOS设备能提供3种不同途径进行定位:Wifi, 蜂窝式移动电话基站, GPS卫星 i ...

  3. java & xml parser

    参考: JDK8 API: http://docs.oracle.com/javase/8/docs/api/ DOM: http://www.w3.org/TR/2004/REC-DOM-Level ...

  4. DB天气app冲刺二阶段第七天

    又冲刺了一个礼拜了 今天收获应该算是不小了 虽然进度上来说还是一点也没前进 但是找到了好几个突破口 明天继续 今天先不多说了困了..

  5. UIDynamic仿物理引擎-浮动碰撞效果-b

    最近产品提了个需求(电商的APP-两鲜),需要在APP背景加上几个水果图案在那里无规则缓慢游荡...模仿 天天果园 APP的.好吧,那我就在网上找了很多文章,总结一下写个demo.效果如下: Mou ...

  6. MongoDB { code: 18, ok: 0.0, errmsg: "auth fails" } 原因

    MongoDB出现 { code: 18, ok: 0.0, errmsg: "auth fails" }  错误的原因: 1.账号密码错误 2.账号不属于该数据库

  7. 【Unity3D】iOS 推送实现

    原地址:http://www.iappfan.com/%E3%80%90unity3d%E3%80%91ios-%E6%8E%A8%E9%80%81%E5%AE%9E%E7%8E%B0/ #impor ...

  8. 分享: 利用Readability解决网页正文提取问题

    原文:http://www.cnblogs.com/iamzyf/p/3529740.html 做数据抓取和分析的各位亲们, 有没有遇到下面的难题呢? - 如何从各式各样的网页中提取正文!? 虽然可以 ...

  9. 因SELinux引起的用户登录问题解决案例

    增强安全性带来的负作用往往是牺牲便利性,就像北京地铁的安检一样,但有些时候我们确实需要它.   案例是,用户有一台安装了KylinOS(国产麒麟,使用的是redhat的内核)的系统,当我们对其系统文件 ...

  10. ASP .NET 如何在 SQL 查询层面实现分页

    [编者按]本文作者为来自巴基斯坦的软件开发工程师 Aqeeel,主要介绍了在 SQL 查询层面实现 ASP.NET 应用的分页方法. 本文系 OneAPM 工程师编译呈现,以下为正文. GridVie ...