Problem Description

Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109). Please find all pairs (a, b) which satisfied the equation ak1⋅n+b1+ bk2⋅n−k2+1 = 0 (mod C)(n = 1, 2, 3, ...).
 
Input
There are multiple test cases (no more than 30). For each test, a single line contains four integers C, k1, b1, k2.
 
Output
First, please output "Case #k: ", k is the number of test case. See sample output for more detail.
Please output all pairs (a, b) in lexicographical order. (1≤a,b<C). If there is not a pair (a, b), please output -1.
 
Sample Input
23 1 1 2
 
Sample Output
Case #1:
1 22
 
Source
 

 
没做出的主要原因在于没有想到化简式子的方法,快速幂还是很容易就想到的,但是以前并没有用过这种方法,主要是题意没有理解好,把n看的太重要,其实题意就是告诉你n=1,2...的时候肯定成立,并不是选其中一个n成立!!!!那么就可以只取1,2来进行计算。
 
n=1时,ak1+b1+ b = 0 (mod C)------------------①
n=2时,a2*k1+b1+ bk2+1 = 0 (mod C)----------②
 
①*ak1 ,等式仍成立,a2*k1+b1+ak1 *b = 0 (mod C)-------------③
 
由方程②=③,可推出 :ak1 (mod C) = bk2 (mod C)---------------*
 
遍历a:1~c-1,利用快速幂从①计算出b,再利用快速幂计算*式等号两边,比较是否相等。
 
 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10 using namespace std; __int64 Quick_Mod(int a, int b, int m)
{
__int64 res = ,term = a % m;
while(b)
{
if(b & ) res = (res * term) % m;
term = (term * term) % m;
b >>= ;
}
return res%m;
} int main()
{
int c,k1,b1,k2,t;
int f;
t=;
while(cin>>c>>k1>>b1>>k2)
{
cout<<"Case #"<<t++<<":"<<endl;
f=;
int a,b,x,y;
for(a=;a<c;++a)
{
x=Quick_Mod(a,k1,c);
b=c-Quick_Mod(a,k1+b1,c);
y=Quick_Mod(b,k2,c);
if(x==y)
{
f=;
cout<<a<<" "<<b<<endl;
}
}
if(f==)
{
cout<<-<<endl;
} } return ;
}
 

HDU 5478 Can you find it(快速幂)的更多相关文章

  1. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  2. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  3. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  4. HDU 2157 How many ways?? (邻接矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意 : 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值   从这道题 ...

  5. HDU - 4990 Reading comprehension 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...

  6. HDU 1005 Number Sequence:矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...

  7. HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )

    链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...

  8. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. hdu 1575 Tr A(矩阵快速幂)

    今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...

随机推荐

  1. Java数据结构之线性表(2)

    从这里开始将要进行Java数据结构的相关讲解,Are you ready?Let's go~~ java中的数据结构模型可以分为一下几部分: 1.线性结构 2.树形结构 3.图形或者网状结构 接下来的 ...

  2. c# 轻量级 ORM 框架 之 Model解析 (四)

    关于orm框架设计,还有必要说的或许就是Model解析了,也是重要的一个环节,在实现上还是相对比较简单的. Model解析,主要用到的技术是反射了,即:把类的属性与表的字段做映射. 把自己的设计及实现 ...

  3. Python 数据类型

    数据类型计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定义 ...

  4. Java中this,static,super及finalkeyword和代码块

    this: 能够使用this表示类中的属性------this.name=name 能够使用this强调调用的是本类的方法 能够使用this调用本类的构造方法------this();调用本类中无參构 ...

  5. 微信公共服务平台开发(.Net 的实现)9-------处理二维码

    今天我们来共同学习一下微信公共服务平台中一个重要内容---二维码扫描.众所周知二维码目前应用范围很广,在这里不再叙述背景了,但是值得一提的是目前大家手机上面应用的二维码扫描工具是支持的都是QR码和PD ...

  6. Android Studio下载安装使用教程

    最近Google的在Google I/O大会上推出了一款新的开发工具android studio.这是一款基于intellij IDE的开发工具,使用Gradle构建,相信做过java的童鞋们都知道这 ...

  7. defer和async的区别

    先来试个一句话解释仨,当浏览器碰到 script 脚本的时候: <script src="script.js"></script> 没有 defer 或 a ...

  8. 生成html的几种方案

    方案1: ///   <summary > ///   传入URL返回网页的html代码 ///   </summary > ///   <param   name=&q ...

  9. ext3文件系统基础

    http://blog.csdn.net/haiross/article/category/1488205/2   block size: 是文件系统最小的单位,Ext2/Ext3/Ext4 的区块大 ...

  10. 基于Raft构建弹性伸缩的存储系统的一些实践

    基于Raft构建弹性伸缩的存储系统的一些实践 原创 2016-07-18 黄东旭 聊聊架构 最近几年来,越来越多的文章介绍了 Raft 或者 Paxos 这样的分布式一致性算法,但主要集中在算法细节和 ...