Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820
题意:多次询问,求1<=x<=N, 1<=y<=M且gcd(x,y)为质数有多少对。
首先, 
由于这里是多次询问,并且数据很大,显然不能直接求解,需要做如下处理。。
整数的除法是满足结合律的,然后我们设T=p*d,有:
注意到后面部分是可以预处理出来的,那么整个ans就可以用分块处理来求了,设
那么有
,考虑当p|x时,根据莫比菲斯mu(x)的性质,px除以其它非p的质数因数都为0,所以g(px)=mu(x)。当p!|x时,除数为p时为mu(x),否则其它的和为-g(x),因为这里还乘了一个p所以要变反。然后O(n)预处理下就可以了。。
//STATUS:C++_AC_3660MS_274708KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
//#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef long long LL;
typedef unsigned long long ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End LL sum[N],g[N];
int isprime[N],mu[N],prime[N];
int cnt;
int T,n,m; void Mobius(int n)
{
int i,j;
//Init isprime[N],mu[N],prime[N],全局变量初始为0
cnt=;mu[]=;
for(i=;i<=n;i++){
if(!isprime[i]){
prime[cnt++]=i;
mu[i]=-;
g[i]=;
}
for(j=;j<cnt && i*prime[j]<=n;j++){
isprime[i*prime[j]]=;
if(i%prime[j]){
mu[i*prime[j]]=-mu[i];
g[i*prime[j]]=mu[i]-g[i];
}
else {
mu[i*prime[j]]=;
g[i*prime[j]]=mu[i];
break;
}
}
}
for(i=;i<=n;i++)sum[i]=sum[i-]+g[i];
} int main(){
// freopen("in.txt","r",stdin);
int i,j,la;
LL ans;
Mobius();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m); if(n>m)swap(n,m);
ans=;
for(i=;i<=n;i=la+){
la=Min(n/(n/i),m/(m/i));
ans+=(sum[la]-sum[i-])*(n/i)*(m/i);
} printf("%lld\n",ans);
}
return ;
}
Bzoj-2820 YY的GCD Mobius反演,分块的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
随机推荐
- 将ANGULAR与后端请求结合
简单的结合,却是很多应用的基础.RESTFUL就此而生.瘦服务,富客户. <!DOCTYPE html> <html lang="en" ng-app=" ...
- POJ3690+位运算
题意:给定一个01矩阵.T个询问,每次询问大矩阵中是否存在这个特定的小矩阵. /* 64位的位运算!!! 题意: 给定一个01矩阵.T个询问,每次询问大矩阵中是否存在这个特定的小矩阵. (64位记录状 ...
- SQL Server 2012 连接到数据库引擎
第 1 课:连接到数据库引擎 https://msdn.microsoft.com/zh-cn/library/ms345332(v=sql.110).aspx 本课将介绍主要的工具以及如何连接并 ...
- PLS-00215:字符串长度限制在范围
在Oracle中有一张people表 创建跟新表的存储过程 修改定义字段长度 总结:在Oracle中执行存储过程时,输出参数的长度要与原表中字段长度一致!
- 【Lucene3.6.2入门系列】第05节_自定义停用词分词器和同义词分词器
首先是用于显示分词信息的HelloCustomAnalyzer.java package com.jadyer.lucene; import java.io.IOException; import j ...
- RTL 与 technology schematic的区别,包含概念与实例
2013-06-25 16:40:45 下面是xilinx官网上的问答贴: http://china.xilinx.com/support/answers/41500.htm#solution The ...
- Pyhon中的除法
Python中分为3种除法:传统除法.精确除法.地板除. 传统除法: 如果是整数除法则执行地板除,如果是浮点数除法则执行精确除法. >>>1/2 0 >>>1.0/ ...
- bzoj1426
偷个懒,转自hzwer [“这种煞笔题怎么总有人问”,被吧主D了... 用f[i]表示已经拥有了i张邮票,则期望还需要购买的邮票数 则f[n]=0 f[i]=f[i]*(i/n)+f[i+1]*((n ...
- CodeForces Round #287 Div.2
A. Amr and Music (贪心) 水题,没能秒切,略尴尬. #include <cstdio> #include <algorithm> using namespac ...
- NOI2010能量采集(数论)
没想到NOI竟然还有这种数学题,看来要好好学数论了…… 网上的题解: 完整的结题报告: 首先我们需要知道一个知识,对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),其与原点o(0,0 ...