Chess 

Almost everyone knows the problem of putting eight queens on an  chessboard such that no Queen can take another Queen. Jan Timman (a famous Dutch chessplayer) wants to know the maximum number of chesspieces of one kind which can be put on an  board with a certain size such that no piece can take another. Because it's rather difficult to find a solution by hand, he asks your help to solve the problem.

He doesn't need to know the answer for every piece. Pawns seems rather uninteresting and he doesn't like Bishops anyway. He only wants to know how many Rooks, Knights, Queens or Kings can be placed on one board, such that one piece can't take any other.

Input

The first line of input contains the number of problems. A problem is stated on one line and consists of one character from the following set rkQK, meaning respectively the chesspieces Rook, Knight, Queen or King. The character is followed by the integers m (  ) and n (  ), meaning the number of rows and the number of columns or the board.

Output

For each problem specification in the input your program should output the maximum number of chesspieces which can be put on a board with the given formats so they are not in position to take any other piece.

Note: The bottom left square is 1, 1.

Sample Input

2
r 6 7
k 8 8

Sample Output

6
32

题意:在一个m*n的棋盘上最多能放置多少个c类型的棋子。棋子间保证不互相攻击。

攻击方式为国际象棋规则,首先简单科普一下:

Q(Queen):按照八皇后攻击规则,即一行,一列,对角线不能存在棋子。可知最多能放八个棋子。

K(King):国王攻击周围八个棋子。最优方案为行列间隔放置。

r (Rook):战车攻击方式为直线攻击。所以最多能放行列的最小值。

k(Knight):骑士的攻击方式为日字攻击,但不会“蹩马腿”。骑士的方案需要分情况:

  1、当只有一行(列)时,当然可以放全部棋子。

  2、当有两行(列)时,最优方案时田字放置。盗图一张。

  3、当大于两行(列)时,最优方案是隔列放置。

附代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define error 1e-8
using namespace std;
const int maxn = ;
int chess[maxn][maxn];
int main()
{
int T; scanf("%d", &T);
while(T--)
{
char kind[]; int r, c;
int ans;
scanf("%s%d%d", kind, &r, &c);
if(kind[] == 'r' || kind[] == 'Q') ans = min(r, c);
else if(kind[] == 'K')
{
ans = ((r+)/)*((c+)/);
}
else if(kind[] == 'k')
{
int m = max(r, c), n = min(r, c);
if(r == || c == ) ans = m;
else if(r == || c == )
{
ans = m/* + m%*;
}
else
{
ans = (n/)*(m/+(m+)/) + (n%)*((m+)/);
}
}
printf("%d\n", ans);
}
return ;
}

【策略】UVa 278 - Chess的更多相关文章

  1. Uva 11538 - Chess Queen

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. uva 11538 Chess Queen<计数>

    链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...

  3. 组合数学 UVa 11538 Chess Queen

    Problem A Chess Queen Input: Standard Input Output: Standard Output You probably know how the game o ...

  4. 【基本计数方法---加法原理和乘法原理】UVa 11538 - Chess Queen

    题目链接 题意:给出m行n列的棋盘,当两皇后在同行同列或同对角线上时可以互相攻击,问共有多少种攻击方式. 分析:首先可以利用加法原理分情况讨论:①两皇后在同一行:②两皇后在同一列:③两皇后在同一对角线 ...

  5. 【组合计数】UVA - 11538 - Chess Queen

    考虑把皇后放在同一横排或者统一纵列,答案为nm(m-1)和nm(n-1),显然. 考虑同一对角线的情况不妨设,n<=m,对角线从左到右依次为1,2,3,...,n-1,n,n,n,...,n(m ...

  6. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

  7. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

  8. 【策略】UVa 1344 - Tian Ji -- The Horse Racing(田忌赛马)

    Here is a famous story in Chinese history. That was about 2300 years ago. General Tian Ji was a high ...

  9. 【策略】UVa 11389 - The Bus Driver Problem

    题意: 有司机,下午路线,晚上路线各n个.给每个司机恰好分配一个下午路线和晚上路线.给出行驶每条路线的时间,如果司机开车时间超过d,则要付加班费d×r.问如何分配路线才能使加班费最少. 虽然代码看起来 ...

随机推荐

  1. Struts2通配符映射

    1.一个Web 应用可能有成百上千个 action 声明. 可以利用 struts 提供的通配符映射机制把多个彼此相似的映射关系简化为一个映射关系 2.通配符映射规则 –若找到多个匹配, 没有通配符的 ...

  2. 自定义使用AVCaptureSession 拍照,摄像,载图

    转载自 http://blog.csdn.net/andy_jiangbin/article/details/19823333 拍照,摄像,载图总结 1 建立Session  2 添加 input  ...

  3. Java常用类(String、StringBuffer、Math、Arrays)

    1.String 操作对象时会重新分配堆内存,栈内存的引用会重新指向新的堆内存 2.StringBuffer(字符串缓存区) 操作的对象一直都是一个 3.Math Math.max(xx,xx); M ...

  4. 【Java】Socket+多线程实现控制台聊天室

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/5827212.html 聊天室程序的结构图: 架构解释: Server服务器相当于一个中转站,Client客户端 ...

  5. java读取properties的工具类PropertiesUtil

    package org.properties.util; import java.io.FileInputStream; import java.io.FileOutputStream; import ...

  6. iOS开发-轻点、触摸和手势

    一.响应者链 以UIResponder作为超类的任何类都是响应者.UIView和UIControl是UIReponder的子类,因此所有视图和所有控件都是响应者. 初始相应器事件首先会传递给UIApp ...

  7. 浅谈TCP优化

    原文地址:http://kb.cnblogs.com/page/197406/ 很多人常常对TCP优化有一种雾里看花的感觉,实际上只要理解了TCP的运行方式就能掀开它的神秘面纱.Ilya Grigor ...

  8. DuiLib(一)——窗口及消息

    最近看了下开源界面库duilib的代码,写几篇相关的文章.网上已经有好多相关的文章了,我这里只是记录自己的学习过程,写到哪里算哪里,权当自娱自乐. duilib是一轻量级的direcui界面库,所谓d ...

  9. 使用GLSL实现更多数量的局部光照 【转】

    原文 http://www.cnblogs.com/CGDeveloper/archive/2008/07/02/1233816.html 众所周知,OpenGL固定管线只提供了最多8盏灯光.如何使得 ...

  10. delphi Edit - TActionList

    Edit     TEditCut     TEditCopy     TEditpaste     TEditSelectAll     TEditUndo     TEditDelete   编辑 ...