题意:

有一棵树,选出尽可能多的节点是的两两节点不相邻,即每个节点和他的子节点只能选一个。求符合方案的最大节点数,并最优方案判断是否唯一。

分析:

d(u, 0)表示以u为根的子树中,不选u节点能得到的最大人数,f(u, 0)表示方案是否唯一。

d(u, 1)表示选u节点能得到的最大人数,同理,f(u, 1)表示方案是否唯一。

状态的转移:

    • d(u, 1)的计算:因为选了u节点,所以u的子节点都不能选。d(u, 1) = sum{ d(v, 0) | v是u的子节点 }
    • f(u, 1)的计算:当且仅当f(v, 0) == 1时,f(u, 1)才是1
    • d(u, 0)的计算:因为没有选u节点,所以对于每个子节点v可选可不选。d(u, 0) = sum{ max(d(v, 0),  d(v, 1)) }
    • f(u, 0)的计算:方案不唯一有两种情况,某个d(v, 1) == d(v, 0) 或者 对应取到max方案的f为1

这里用了C++中的map,将字符串与编号对应起来,编写代码比较方便。

 //#define LOCAL
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <map>
#include <vector>
#include <iostream>
using namespace std; const int maxn = ;
vector<int> sons[maxn];
map<string, int> dict;
int cnt, d[maxn][], f[maxn][]; int ID(const string& s)
{
if(!dict.count(s)) dict[s] = cnt++;
return dict[s];
} int dp(int u, int k) {
f[u][k] = ;
d[u][k] = k;
for(int i = ; i < sons[u].size(); i++) {
int v = sons[u][i];
if(k == ) { //选节点u
d[u][] += dp(v, );
if(!f[v][]) f[u][] = ; //如果子节点v不唯一,则父节点u也不唯一
} else {
d[u][] += max(dp(v, ), dp(v, ));
if(d[v][] == d[v][]) f[u][k] = ;
else if(d[v][] > d[v][] && !f[v][]) f[u][k] = ;
else if(d[v][] > d[v][] && !f[v][]) f[u][k] = ;
}
}
return d[u][k];
} int main(void)
{
#ifdef LOCAL
freopen("1220in.txt", "r", stdin);
#endif int n;
string s, s2;
while(cin >> n >> s)
{
getchar();
cnt = ;
dict.clear();
for(int i = ; i <= n; ++i) sons[i].clear(); //cin >> s;
ID(s);
for(int i = ; i < n; ++i)
{
cin >> s >> s2;
sons[ID(s2)].push_back(ID(s));
}
printf("%d ", max(dp(, ), dp(, )) );
bool unique = false;
if(d[][] > d[][] && f[][]) unique = true;
if(d[][] > d[][] && f[][]) unique = true;
printf("%s\n", unique ? "Yes" : "No");
} return ;
}

代码君

UVa 1220 (树的最大独立集) Party at Hali-Bula的更多相关文章

  1. UVa 1220 Hali-Bula的晚会(树的最大独立集)

    https://vjudge.net/problem/UVA-1220 题意: 公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司.要求选尽量多的人,但不能同时选择一个人和他的直 ...

  2. POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

    POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...

  3. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. POJ 2342 树的最大独立集

    题意:在树的最大独立集的基础上,加上权值.求最大. 分析: 采用刷表的方式写记忆化,考虑一个点选和不选,返回方式pair 型. 首先,无根树转有根树,dp(root). 注意的是:u不选,那么他的子节 ...

  5. POJ 3342 Party at Hali-Bula (树形dp 树的最大独立集 判多解 好题)

    Party at Hali-Bula Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5660   Accepted: 202 ...

  6. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  7. HDU - 1520 Anniversary party (树的最大独立集)

    Time limit :1000 ms :Memory limit :32768 kB: OS :Windows There is going to be a party to celebrate t ...

  8. UVA - 1220 Party at Hali-Bula 树的最大独立集

    题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集.并判断最大独立集是否唯一 思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子 ...

  9. UVa 1220 Party at Hali-Bula (树形DP,最大独立集)

    题意:公司有 n 个人形成一个树形结构,除了老板都有唯一的一个直系上司,要求选尽量多的人,但不能同时选一人上和他的直系上司,问最多能选多少人,并且是不是唯一的方案. 析:这个题几乎就是树的最大的独立集 ...

随机推荐

  1. 一个SQL Server 2008 R2 死锁的问题解决

    问题场景:在客户那碰到一个操作卡死的现象 问题解决: 1.如何挂钩是死锁问题:通过代码跟踪,发现是指执行一个SQL语句超时,因此猜想可能是表锁住了 2.如果确认是思索问题:通过SQL发现死锁,以下是相 ...

  2. HDU 4162 Shape Number

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4162 题意: 求给定字符的一阶差分链的最小表示. 题解: 先求一阶差分链,再求一阶差分链的最小表示法 ...

  3. Unix无缓冲文件操作函数、文件信息查询

    问题描述:         Unix无缓冲文件操作函数.文件信息查询 问题解决:        struct stat 结构体信息: 具体代码: 具体源文件:

  4. 【BZOJ】【1529】 【POI2005】ska Piggy banks

    本来以为是tarjan缩点……但是64MB的空间根本不足以存下原图和缩点后的新图.所以呢……并查集= = orz hzwer MLE的tarjan: /************************ ...

  5. html——a标签添加点击事件,火狐浏览器直接显示0

    一.问题描述 给一个a标签添加了点击事件,页面直接给了0如下图 二.问题解决 后台调试模式下,发现也进了后台方法,也返回了页面. 于是想到先把页面里大部分内容去掉,去掉所有js,查看是否是部分代码有问 ...

  6. Sandcastle:生成.NET API文档的工具 (帮忙文档)

    (1)准备软件 首先需要我们准备如下软件: SandCastle, 下载地址: http://sandcastle.codeplex.com/releases/view/47665 (2)准备项目文件 ...

  7. Spring事务配置的五种方式(转)

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  8. Java Socket 基础例子

    1.服务器端代码 package com.lanber.socket; import java.io.DataInputStream; import java.io.DataOutputStream; ...

  9. tornado的cookie和secure cookie

    tornado里面有关几个cookie的处理,在web.py文件里. get_cookie, set_cookie普通的设置cookie, clear_cookie, clear_all_cookie ...

  10. D&F学数据结构系列——插入排序

    插入排序(insertion sort) 插入排序由P-1趟(pass)排序组成.对于P=1趟到P=N-1趟,插入排序保证从位置0到位置P-1上的元素为已排序状态.插入排序利用了这样的事实:位置0到位 ...