UVA 10025 (13.08.06)
| The ? 1 ? 2 ? ... ? n = k problem |
Theproblem
Given the following formula, one can set operators '+' or '-' instead of each '?', in order to obtain a given k
? 1 ? 2 ? ... ? n = k
For example: to obtain k = 12 , the expression to be used will be:
- 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12
with n = 7
TheInput
The first line is the number of test cases, followed by a blank line.
Each test case of the input contains integer k (0<=|k|<=1000000000).
Each test case will be separated by a single line.
The Output
For each test case, your program should print the minimal possible n (1<=n) to obtain k with the above formula.
Print a blank line between the outputs for two consecutive test cases.
Sample Input
2 12 -3646397
Sample Output
7 2701
题意不累赘~
做法:
假设sum1 = a1 + a2 + a3 + ... + an + x >= k
而sum2 = a1 + a2 + a3 + ... + an - x = k
那么sum1 - sum2 = 2x
也就是说, 无论k的正负, 全把k当正数处理, 一直累加正数得到sum1 与 不按全当正数处理得到的sum2 相差的值是一个偶数(2x, 即负数的绝对值的两倍~)
故, 全部从1累加到n吧, 直到 (sum >= k && (sum - k) % 2 == 0)
AC代码:
#include<stdio.h>
int T;
int main() {
scanf("%d", &T);
while(T--) {
int k;
int sum = 0;
scanf("%d", &k);
if(k < 0)
k = (-1 * k);
for(int i = 1; ;i++) {
sum += i;
if(sum >= k && (sum-k) % 2 == 0) {
printf("%d\n", i);
break;
}
}
if(T)
printf("\n");
}
return 0;
}
UVA 10025 (13.08.06)的更多相关文章
- UVA 253 (13.08.06)
Cube painting We have a machine for painting cubes. It is supplied withthree different colors: blu ...
- UVA 573 (13.08.06)
The Snail A snail is at the bottom of a 6-foot well and wants to climb to the top.The snail can cl ...
- UVA 10499 (13.08.06)
Problem H The Land of Justice Input: standard input Output: standard output Time Limit: 4 seconds In ...
- UVA 10790 (13.08.06)
How Many Points of Intersection? We have two rows. There are a dots on the toprow andb dots on the ...
- UVA 10194 (13.08.05)
:W Problem A: Football (aka Soccer) The Problem Football the most popular sport in the world (ameri ...
- UVA 465 (13.08.02)
Overflow Write a program that reads an expression consisting of twonon-negative integer and an ope ...
- UVA 10494 (13.08.02)
点此连接到UVA10494 思路: 采取一种, 边取余边取整的方法, 让这题变的简单许多~ AC代码: #include<stdio.h> #include<string.h> ...
- UVA 424 (13.08.02)
Integer Inquiry One of the first users of BIT's new supercomputer was Chip Diller. Heextended his ...
- UVA 10106 (13.08.02)
Product The Problem The problem is to multiply two integers X, Y. (0<=X,Y<10250) The Input T ...
随机推荐
- 修改 AndroidManifest minSdkVersion 的方法
1.修改AndroidManifest文件 使用16进制编辑器检索位置:FF FF FF FF 08 00 00 10 ?? 将??替换为原APK的minSdkVersion对应的16进制 ...
- 推荐一个网站Stack Overflow
网站URL:http://stackoverflow.com 我是怎么知道这个网站的呢?其实这个网站非常出名的,相信许多人都知道.如果你不知道,请继续阅读: 一次我在CSDN上面提问,但是想要再问多几 ...
- kali ssh 登录
kali 开启ssh 登录:可在windows 中通过 xshell 登录,方便操作. 修改sshd_config文件, vi /etc/ssh/sshd_config 将#PasswordAuthe ...
- 解决ehcache的UpdateChecker问题
问题描述 项目中用了ssh框架,每次启动tomcat的时候都特别慢,会在这样一句话下面停留很久 [2016-01-08 23:55:51,517 INFO UpdateChecker.java:doC ...
- Scriptcase优惠活动即将结束
前段时间我们开展了一段时间的Scriptcase打折优惠活动,现该活动即将结束,敬请知悉. Scriptcase是最好的PHP代码生成器,可以方便的与MySQL.Oracle.MSSQL.DB2等几乎 ...
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- HTML要点(五)<iframe>标签
浏览器支持:全部支持 定义和用法 iframe 元素会创建包含另外一个文档的内联框架(即行内框架). HTML 与 XHTML 之间的差异 在 HTML 4.1 Strict DTD 和 XHTML ...
- 局部化原理(Laplace渐进估计方法)
设$f(x)$于$[0,1]$上严格单调递减,且$f(0)=1,f(1)=0$,证明: $$\int_{0}^{1}f^{n}(x)dx \sim \int_{0}^{\delta}f^{n}(x), ...
- HTML第五天学习笔记
今天先是学习了基础的css样式 <html> <head> <title></title> <meta http-equiv = "co ...
- NuMicro Coretex™-M0家族中哪种芯片支持UID (Unique ID)? 用户该怎么做才能对其芯片进行加密功能?
http://www.nuvoton.com/hq/chs/productfaqs/Pages/00000001.aspx 是的,使用者可利用UID来对以下系列芯片进行加密, Mini51 Serie ...