The ? 1 ? 2 ? ... ? n = k problem 

Theproblem

Given the following formula, one can set operators '+' or '-' instead of each '?', in order to obtain a given k
? 1 ? 2 ? ... ? n = k

For example: to obtain k = 12 , the expression to be used will be:
- 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12
with n = 7

TheInput

The first line is the number of test cases, followed by a blank line.

Each test case of the input contains integer k (0<=|k|<=1000000000).

Each test case will be separated by a single line.

The Output

For each test case, your program should print the minimal possible n (1<=n) to obtain k with the above formula.

Print a blank line between the outputs for two consecutive test cases.

Sample Input

2

12

-3646397

Sample Output

7

2701

题意不累赘~

做法:

假设sum1 = a1 + a2 + a3 + ... + an + x >= k

而sum2 = a1 + a2 + a3 + ... + an - x = k

那么sum1 - sum2 = 2x

也就是说, 无论k的正负, 全把k当正数处理, 一直累加正数得到sum1 与 不按全当正数处理得到的sum2 相差的值是一个偶数(2x, 即负数的绝对值的两倍~)

故, 全部从1累加到n吧, 直到 (sum >= k && (sum - k) % 2 == 0)

AC代码:

#include<stdio.h>

int T;

int main() {
scanf("%d", &T);
while(T--) {
int k;
int sum = 0;
scanf("%d", &k);
if(k < 0)
k = (-1 * k);
for(int i = 1; ;i++) {
sum += i;
if(sum >= k && (sum-k) % 2 == 0) {
printf("%d\n", i);
break;
}
}
if(T)
printf("\n");
}
return 0;
}

UVA 10025 (13.08.06)的更多相关文章

  1. UVA 253 (13.08.06)

     Cube painting  We have a machine for painting cubes. It is supplied withthree different colors: blu ...

  2. UVA 573 (13.08.06)

     The Snail  A snail is at the bottom of a 6-foot well and wants to climb to the top.The snail can cl ...

  3. UVA 10499 (13.08.06)

    Problem H The Land of Justice Input: standard input Output: standard output Time Limit: 4 seconds In ...

  4. UVA 10790 (13.08.06)

     How Many Points of Intersection?  We have two rows. There are a dots on the toprow andb dots on the ...

  5. UVA 10194 (13.08.05)

    :W Problem A: Football (aka Soccer)  The Problem Football the most popular sport in the world (ameri ...

  6. UVA 465 (13.08.02)

     Overflow  Write a program that reads an expression consisting of twonon-negative integer and an ope ...

  7. UVA 10494 (13.08.02)

    点此连接到UVA10494 思路: 采取一种, 边取余边取整的方法, 让这题变的简单许多~ AC代码: #include<stdio.h> #include<string.h> ...

  8. UVA 424 (13.08.02)

     Integer Inquiry  One of the first users of BIT's new supercomputer was Chip Diller. Heextended his ...

  9. UVA 10106 (13.08.02)

     Product  The Problem The problem is to multiply two integers X, Y. (0<=X,Y<10250) The Input T ...

随机推荐

  1. 修改 AndroidManifest minSdkVersion 的方法

    1.修改AndroidManifest文件    使用16进制编辑器检索位置:FF FF FF FF 08 00 00 10 ??    将??替换为原APK的minSdkVersion对应的16进制 ...

  2. 推荐一个网站Stack Overflow

    网站URL:http://stackoverflow.com 我是怎么知道这个网站的呢?其实这个网站非常出名的,相信许多人都知道.如果你不知道,请继续阅读: 一次我在CSDN上面提问,但是想要再问多几 ...

  3. kali ssh 登录

    kali 开启ssh 登录:可在windows 中通过 xshell 登录,方便操作. 修改sshd_config文件, vi /etc/ssh/sshd_config 将#PasswordAuthe ...

  4. 解决ehcache的UpdateChecker问题

    问题描述 项目中用了ssh框架,每次启动tomcat的时候都特别慢,会在这样一句话下面停留很久 [2016-01-08 23:55:51,517 INFO UpdateChecker.java:doC ...

  5. Scriptcase优惠活动即将结束

    前段时间我们开展了一段时间的Scriptcase打折优惠活动,现该活动即将结束,敬请知悉. Scriptcase是最好的PHP代码生成器,可以方便的与MySQL.Oracle.MSSQL.DB2等几乎 ...

  6. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  7. HTML要点(五)<iframe>标签

    浏览器支持:全部支持 定义和用法 iframe 元素会创建包含另外一个文档的内联框架(即行内框架). HTML 与 XHTML 之间的差异 在 HTML 4.1 Strict DTD 和 XHTML ...

  8. 局部化原理(Laplace渐进估计方法)

    设$f(x)$于$[0,1]$上严格单调递减,且$f(0)=1,f(1)=0$,证明: $$\int_{0}^{1}f^{n}(x)dx \sim \int_{0}^{\delta}f^{n}(x), ...

  9. HTML第五天学习笔记

    今天先是学习了基础的css样式 <html> <head> <title></title> <meta http-equiv = "co ...

  10. NuMicro Coretex™-M0家族中哪种芯片支持UID (Unique ID)? 用户该怎么做才能对其芯片进行加密功能?

    http://www.nuvoton.com/hq/chs/productfaqs/Pages/00000001.aspx 是的,使用者可利用UID来对以下系列芯片进行加密, Mini51 Serie ...