【BZOJ 1563】 [NOI2009]诗人小G
Description

Input

Output
Sample Input
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet
Sample Output
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------
【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。
HINT
总共10个测试点,数据范围满足:
测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。
#include<cstdio>
#include<cstring>
#define ll long double
struct node{int l,r,p;}q[];
#define MAX 1000000000000000000LL
#define N 100100
ll sum[N],f[N];
int n,l,p,T;
char ch[];
ll pow(ll y){
if(y<)y=-y;
ll ans=;
for (int i=;i<=p;i++) ans*=y;
return ans;
} ll calc(int x,int y){
return f[x]+pow(sum[y]-sum[x]+(y-x-)-l);
} int find(node t,int x){
int l=t.l,r=t.r;
while(l<=r){
int mid=(l+r)>>;
if (calc(x,mid)<=calc(t.p,mid)) r=mid-;
else l=mid+;
}
return l;
} void dp(){
int head=,tail=;
q[++tail]=(node){,n,};
for (int i=;i<=n;i++){
if(q[head].r<i&&head<=tail) head++;
f[i]=calc(q[head].p,i);
if (head>tail||calc(i,n)<=calc(q[tail].p,n)){
while(head<=tail&&calc(q[tail].p,q[tail].l)>=calc(i,q[tail].l)) tail--;
if(head>tail)q[++tail]=(node){i,n,i};
else{
int x=find(q[tail],i);
q[tail].r=x-;
q[++tail]=(node){x,n,i};
}
}
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&l,&p);
for (int i=;i<=n;i++) scanf("%s",ch),sum[i]=sum[i-]+strlen(ch);
dp();
if(f[n]>MAX)
puts("Too hard to arrange");
else
printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
}
【BZOJ 1563】 [NOI2009]诗人小G的更多相关文章
- [BZOJ] 1563: [NOI2009]诗人小G
1D/1D的方程,代价函数是一个p次函数,典型的决策单调性 用单调队列(其实算单调栈)维护决策点,优化转移 复杂度\(O(nlogn)\) #include<iostream> #incl ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- P1912 [NOI2009]诗人小G
P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...
- LG1912 [NOI2009]诗人小G
题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...
- [NOI2009] 诗人小G [题解]
诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...
- NOI2009 诗人小G
Sol 决策单调性+二分 传说中的四边形不等式...其实做了这道题还是不会... 证明简直吃屎//// 贴个传送门这里有部分分做法还有决策单调性的证明 byvoid ISA tell me that ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
随机推荐
- hdu 4267 树形DP
思路:先dfs一下,找出1,n间的路径长度和价值,回溯时将该路径长度和价值清零.那么对剩下的图就可以直接树形dp求解了. #include<iostream> #include<al ...
- .NET平台数据持久层框架
在.NET平台下的几个数据持久层框架: 1.NHibernate 2.NBear 3.Castle ActiveRecord 4.iBATIS.NET 5.DAAB 6.DLinq
- bootstrap的滚动监听
<!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="UTF-8& ...
- 诡异的问题“该字符串未被识别为有效的 DateTime”
问题描述:"该字符串未被识别为有效的 DateTime"这个异常相信大家都会碰到,但是这一次真的无法理解,服务器运行一段时间之后才会出现这个问题,并且是系统中所有和日期相关的模块, ...
- SQL语句添加,删除主键
IF EXISTS (SELECT * FROM sys.all_objects WHERE type_desc= N'主键名')begin --删除主键 alter table 表名 drop ...
- HDOJ2007平方和与立方和
平方和与立方和 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- mvc Web api 如何在控制器中调用
关于如何调用 mvc Web api 的方法,网上一搜就是一大把,基本都是在前台jq中调用的,但是如何在后台调用呢? 本楼主做了一下测试,仅供参考. 先写一个简单的api,如下:[域1] namesp ...
- Objective-c中的对象间的消息传递以及消息路由
刚开始使用Objective-C时,总是习惯将对象间发送消息之间称呼为方法调用.心想,这和c#不是一回事吗?不就是调用实例方法吗,还搞个消息发送作甚,最后还不是要转化为方法的调用?通过一段时间的理解学 ...
- Xcode7网络问题
更新Xcode7以后运行模拟器,控制台打印:Application Transport Security has blocked a cleartext HTTP (http://) resource ...
- OC2_点语法(属性关键字)
// // Dog.h // OC2_点语法(属性关键字) // // Created by zhangxueming on 15/6/16. // Copyright (c) 2015年 zhang ...