Travelling

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2520    Accepted Submission(s): 735

Problem Description
After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
 
Input
There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
 
Output
Output the minimum fee that he should pay,or -1 if he can't find such a route.
 
Sample Input
2 1
1 2 100
3 2
1 2 40
2 3 50
3 3
1 2 3
1 3 4
2 3 10
 
Sample Output
100
90
7
 
用三进制来进行壮态压缩,这样就可以大大减少状态数,在预处理一下,就可以了,其次,每一个点都要走一次!
#include <iostream>
#include <stdio.h>
using namespace std;
int threenum[11]={1,3,9,27,81,243,729,2187,6561,19683,59049};
#define inf 0x4f4f4f4f
int dp[600000][15],n,m;
int threeevery[600000][15],dis[15][15];
int fmin(int x,int y){if(x<y)return x;return y;}
void makethree()//先预处理,算出所有的值
{
int i,temp,j;
for(i=0;i<threenum[10];i++)//3的11次
{
temp=i;
for(j=0;j<10;j++)
{
threeevery[i][j]=temp%3;
temp=temp/3;
}
} }
void init()
{
int i,j,s,e,val;
for(i=0;i<threenum[n];i++)
{
for(j=0;j<n;j++)
{
dp[i][j]=inf;
}
}
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
dis[i][j]=inf;
}
for(i=0;i<n;i++)
{
dp[threenum[i]][i]=0;//到自已的点初始化为0
} for(i=0;i<m;i++)
{ scanf("%d%d%d",&s,&e,&val);
s--;e--;//全部从0开
             if(val<dis[s][e])
dis[s][e]=dis[e][s]=val;//排除重边取最小值 } }
int makedp()
{
int i,j,k,minx;
bool flag;
minx=inf;
for(i=0;i<threenum[n];i++)//对于每一位都要计算
{
flag=true;//标记是否每一个点都已经经过
for(j=0;j<n;j++)
{
if(threeevery[i][j]==0)//是这个点没有走
flag=false;
if(dp[i][j]==inf)//没有走过
{
continue;
}
for(k=0;k<n;k++)//加入k这个点
{
if((j==k)||threeevery[i][k]>=2||(dis[j][k]==inf))//自已到自已的地方,经过超过两次,不相连通去掉
continue;
dp[i+threenum[k]][k]=fmin(dp[i+threenum[k]][k],dp[i][j]+dis[j][k]);//从j到k
} }
if(flag)//满足条件,对最小值进行更新
{
for(j=0;j<n;j++)
{
minx=fmin(dp[i][j],minx);
}
}
}
if(minx==inf)
{
minx=-1;
} printf("%d\n",minx);
return 1;
}
int main()
{
makethree();
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
makedp();
}
return 0;
}

 

hdu3001 Travelling的更多相关文章

  1. hdu3001Travelling

    参考了别人的代码   https://blog.csdn.net/u010372095/article/details/38474721 深感自己的弱小 这是tsp问题,和基本的tsp问题没什么大的区 ...

随机推荐

  1. uvalive 3523 Knights of the Round Table 圆桌骑士(强连通+二分图)

    题目真心分析不出来.看了白书才明白,不过有点绕脑. 容易想到,把题目给的不相邻的关系,利用矩阵,反过来建图.既然是全部可行的关系,那么就应该能画出含奇数个点的环.求环即是求双连通分量:找出所有的双连通 ...

  2. UVA 568 Just the Facts (水)

    题意: 求一个数n的阶乘,其往后数第1个不是0的数字是多少. 思路: [1,n]逐个乘,出现后缀0就过滤掉,比如12300就变成123,继续算下去.为解决爆long long问题,将其余一个数mod, ...

  3. 利用改进的cca算法,进行识别

    这个方法,很有意思,第一,不用降维:第二,跟ica做比较,竟然说比强大的ica还好: 看来,国防科大的博士,还是很牛的. <OI and fMRI Signal Separation Using ...

  4. JavaScript在IE和Firefox(火狐)的不兼容问题解决方法小结 【转】http://blog.csdn.net/uniqer/article/details/7789104

    1.兼容firefox的 outerHTML,FF中没有outerHtml的方法. 代码如下: if (window.HTMLElement) { HTMLElement.prototype.__de ...

  5. Ejabberd源码解析前奏--管理

    一.ejabberdctl 使用ejabberdctl命令行管理脚本,你可以执行ejabberdctl命令和一些普通的ejabberd命令(后面会详细解说).这意味着你可以在一个本地或远程ejabbe ...

  6. android学习笔记六

    Android中Activity的Intent大全 Api Level 3: (SDK 1.5) android.intent.action.ALL_APPS android.intent.actio ...

  7. mysql教程-触发器

    触发器 1. mysql触发器 情景说明 情景设置,如图,当我们点击了购买,将会发生什么? 现有如下两张表 商品表 编号(id)名称(name)价格(price)库存(stock) 1F2战斗机100 ...

  8. C#中常见的winform控件命名规范

    我们知道Button 常常简称为btn,那么Winform中的其它控件呢,这篇文章在C#的winform控件命名规范 的基础上对一些控件的名称的简称进行了整理. 1. 标准控件 NO. 控件类型简写 ...

  9. [Papers]NSE, $\pi$, Lorentz space [Suzuki, NA, 2012]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s} ...

  10. Redis Sentinel机制与用法

    概述 Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Master-slave的高可用方案时,假如master宕机了,Redis本身(包括它的很多客户端)都 ...