GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7002    Accepted Submission(s): 2577

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
 
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
2008 “Sunline Cup” National Invitational Contest
 
容斥定理、具体见代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define N 100000 int tot;
int prime[N+];
bool isprime[N+];
int phi[N+];
void prime_pri()
{
tot=;
phi[]=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
for(int i=;i<=N;i++)
{
if(isprime[i])
{
prime[tot++]=i;
phi[i]=i-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N) break;
isprime[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
}
int fatcnt;
int factor[N][];
int getfactors(int x)
{
fatcnt=;
int tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
int cal(int n,int m) //求1到n中与m互质的数的个数
{
int tmp,cnt,ans=;
getfactors(m);
for(int i=;i<(<<fatcnt);i++) //0表示不选择因子
{
cnt=;
tmp=;
for(int j=;j<fatcnt;j++)
{
if(i&(<<j))
{
cnt++;
tmp*=factor[j][];
}
}
if(cnt&) ans+=n/tmp;
else ans-=n/tmp;
}
return n-ans;
}
int main()
{
prime_pri();
int T,iCase=;
int a,b,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&a,&b,&b,&k);
if(k==) //除0特判
{
printf("Case %d: 0\n",iCase++);
continue;
}
a/=k,b/=k;
if(a>b) swap(a,b);
ll ans=;
for(int i=;i<=b;i++)
{
if(i<=a) ans+=phi[i];
else ans+=cal(a,i);
}
printf("Case %d: %lld\n",iCase++,ans);
}
return ;
}

[HDU 1695] GCD的更多相关文章

  1. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. HDU 1695 GCD#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...

  4. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  10. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. 《C和指针》 读书笔记 -- 第11章 动态内存分配

    1.C函数库提供了两个函数,malloc和free,分别用于执行动态内存分配和释放,这些函数维护一个可用内存池. void *malloc(size_t size);//返回指向分配的内存块起始位置的 ...

  2. Pox组件

    最近在学习Pox,为了加深印象,对Pox wiki中的Pox组件写了些笔记.   按照组件的功能进行分类:   L2层地址学习.洪泛 forwarding.hub forwarding.l2_lear ...

  3. python学习笔记15(面向对象编程)

    虽然Python是解释性语言,但是它是面向对象的,能够进行对象编程. 一.如何定义一个类 在进行python面向对象编程之前,先来了解几个术语:类,类对象,实例对象,属性,函数和方法. 类是对现实世界 ...

  4. 轻仿QQ音乐之音频歌词播放、锁屏歌词-b

    先上效果图 歌词播放界面 音乐播放界面 锁屏歌词界面 一. 项目概述 前面内容实在是太基础..只想看知识点的同学可以直接跳到第三部分的干货 项目播放的mp3文件及lrc文件均来自QQ音乐 本文主要主要 ...

  5. linux驱动系列之tftp(转)

    转自网页:http://blog.csdn.net/xingyu19871124/article/details/7315893 最近在将做的嵌入式项目移植到ARM开发板上,宿主机用的ubuntu11 ...

  6. java对象数组

    问题描述:     java 对象数组的使用 问题解决: 数组元素可以是任何类型(只要所有元素具有相同的类型) 数组元素可以是基本数据类型 数组元素也可以是类对象,称这样的数组为对象数组.在这种情况下 ...

  7. Unity3d + NGUI 的多分辨率适配(黑边)

    原地址:http://www.2cto.com/kf/201310/250921.html 一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主 ...

  8. Mesh Baker的基本操作与功能演示

    原地址:http://www.narkii.com/club/thread-301789-1.html 如何降低游戏在系统中的消耗并带给用户最佳的体验是开发者一直追求的目标,在Unity里面对于模型与 ...

  9. 眼见为实(1):C++基本概念在编译器中的实现

    眼见为实(1):C++基本概念在编译器中的实现 对于C++对象模型,相信很多程序员都耳熟能详. 本文试图通过一个简单的例子演示一些C++基本概念在编译器中的实现,以期达到眼见为实的效果. 本文的演示程 ...

  10. linux pts/0的含义

    pts是所谓的伪终端或虚拟终端,具体表现就是你打开一个终端,这个终端就叫pts/0,如果你再打开一个终端,这个新的终端就叫pts /1.比如用who命令查询当前登录的用户,可以看到每个用户的TTY设备 ...