GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7002    Accepted Submission(s): 2577

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
 
Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
2008 “Sunline Cup” National Invitational Contest
 
容斥定理、具体见代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define N 100000 int tot;
int prime[N+];
bool isprime[N+];
int phi[N+];
void prime_pri()
{
tot=;
phi[]=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
for(int i=;i<=N;i++)
{
if(isprime[i])
{
prime[tot++]=i;
phi[i]=i-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N) break;
isprime[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
}
int fatcnt;
int factor[N][];
int getfactors(int x)
{
fatcnt=;
int tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
int cal(int n,int m) //求1到n中与m互质的数的个数
{
int tmp,cnt,ans=;
getfactors(m);
for(int i=;i<(<<fatcnt);i++) //0表示不选择因子
{
cnt=;
tmp=;
for(int j=;j<fatcnt;j++)
{
if(i&(<<j))
{
cnt++;
tmp*=factor[j][];
}
}
if(cnt&) ans+=n/tmp;
else ans-=n/tmp;
}
return n-ans;
}
int main()
{
prime_pri();
int T,iCase=;
int a,b,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&a,&b,&b,&k);
if(k==) //除0特判
{
printf("Case %d: 0\n",iCase++);
continue;
}
a/=k,b/=k;
if(a>b) swap(a,b);
ll ans=;
for(int i=;i<=b;i++)
{
if(i<=a) ans+=phi[i];
else ans+=cal(a,i);
}
printf("Case %d: %lld\n",iCase++,ans);
}
return ;
}

[HDU 1695] GCD的更多相关文章

  1. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. HDU 1695 GCD#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...

  4. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

  5. hdu 1695 GCD 欧拉函数 + 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K]  和 [L ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  10. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. UVA 524

    Description   A ring is composed of n (even number) circles as shown in diagram. Put natural numbers ...

  2. [转]DRY原则和Shy原则

    转自:http://blog.csdn.net/hukeab/article/details/2944675   保障可维护性的主要诀窍是遵循DRY原则和Shy原则. 在一个系统的整个生命周期里,理解 ...

  3. java实现.net中的枚举

    Java 和 .net中的枚举不一样,在.net中,枚举是属于值类型的,而在java中确实引用类型的(其实就是一个特殊的类,enum默认集成java.lang.Enum类),所以在java中操作枚举类 ...

  4. 前端跨域之html5 XMLHttpRequest Level2

    前端代码 var xhr=new XMLHttpRequest(); xhr.open('POST','http://127.0.0.1:8081/ceshi',true); xhr.onreadys ...

  5. Jquery Highcharts 选项配置 说明文档

    Highcharts提供大量的选项配置参数,您可以轻松定制符合用户要求的图表,下面为Highcharts常用的最核心的参数选项配置. Chart:图表区选项 Chart图表区选项用于设置图表区相关属性 ...

  6. @Repository、@Service、@Controller 和 @Component(转)

    鸣谢:http://blog.csdn.net/ye1992/article/details/19971467 @Repository.@Service.@Controller 和 @Componen ...

  7. The 11th Zhejiang Provincial Collegiate Programming Contest->Problem G:G - Ternary Calculation

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3782 题意:把输入的三元运算用计算机运算出来. ;          ci ...

  8. Android中SQLite应用详解(转)

    上次我向大家介绍了SQLite的基本信息和使用过程,相信朋友们对SQLite已经有所了解了,那今天呢,我就和大家分享一下在Android中如何使用SQLite. 现在的主流移动设备像Android.i ...

  9. 【leetcode】Word Ladder II(hard)★ 图 回头看

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  10. iOS设计模式——委托(delegate)

    委托(delegate)也叫代理是iOS开发中常用的设计模式.我们借助于protocol(参考博文:objective-c协议(protocol))可以很方便的实现这种设计模式. 什么是代理? 苹果的 ...