[HDU 1695] GCD
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7002 Accepted Submission(s): 2577
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define N 100000 int tot;
int prime[N+];
bool isprime[N+];
int phi[N+];
void prime_pri()
{
tot=;
phi[]=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
for(int i=;i<=N;i++)
{
if(isprime[i])
{
prime[tot++]=i;
phi[i]=i-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N) break;
isprime[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
{
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
}
int fatcnt;
int factor[N][];
int getfactors(int x)
{
fatcnt=;
int tmp=x;
for(int i=;prime[i]<=tmp/prime[i];i++)
{
factor[fatcnt][]=;
if(tmp%prime[i]==)
{
factor[fatcnt][]=prime[i];
while(tmp%prime[i]==)
{
factor[fatcnt][]++;
tmp/=prime[i];
}
fatcnt++;
}
}
if(tmp!=)
{
factor[fatcnt][]=tmp;
factor[fatcnt++][]=;
}
return fatcnt;
}
int cal(int n,int m) //求1到n中与m互质的数的个数
{
int tmp,cnt,ans=;
getfactors(m);
for(int i=;i<(<<fatcnt);i++) //0表示不选择因子
{
cnt=;
tmp=;
for(int j=;j<fatcnt;j++)
{
if(i&(<<j))
{
cnt++;
tmp*=factor[j][];
}
}
if(cnt&) ans+=n/tmp;
else ans-=n/tmp;
}
return n-ans;
}
int main()
{
prime_pri();
int T,iCase=;
int a,b,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&a,&b,&b,&k);
if(k==) //除0特判
{
printf("Case %d: 0\n",iCase++);
continue;
}
a/=k,b/=k;
if(a>b) swap(a,b);
ll ans=;
for(int i=;i<=b;i++)
{
if(i<=a) ans+=phi[i];
else ans+=cal(a,i);
}
printf("Case %d: %lld\n",iCase++,ans);
}
return ;
}
[HDU 1695] GCD的更多相关文章
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- HDU 1695 GCD#容斥原理
http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- UVA 524
Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbers ...
- [转]DRY原则和Shy原则
转自:http://blog.csdn.net/hukeab/article/details/2944675 保障可维护性的主要诀窍是遵循DRY原则和Shy原则. 在一个系统的整个生命周期里,理解 ...
- java实现.net中的枚举
Java 和 .net中的枚举不一样,在.net中,枚举是属于值类型的,而在java中确实引用类型的(其实就是一个特殊的类,enum默认集成java.lang.Enum类),所以在java中操作枚举类 ...
- 前端跨域之html5 XMLHttpRequest Level2
前端代码 var xhr=new XMLHttpRequest(); xhr.open('POST','http://127.0.0.1:8081/ceshi',true); xhr.onreadys ...
- Jquery Highcharts 选项配置 说明文档
Highcharts提供大量的选项配置参数,您可以轻松定制符合用户要求的图表,下面为Highcharts常用的最核心的参数选项配置. Chart:图表区选项 Chart图表区选项用于设置图表区相关属性 ...
- @Repository、@Service、@Controller 和 @Component(转)
鸣谢:http://blog.csdn.net/ye1992/article/details/19971467 @Repository.@Service.@Controller 和 @Componen ...
- The 11th Zhejiang Provincial Collegiate Programming Contest->Problem G:G - Ternary Calculation
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3782 题意:把输入的三元运算用计算机运算出来. ; ci ...
- Android中SQLite应用详解(转)
上次我向大家介绍了SQLite的基本信息和使用过程,相信朋友们对SQLite已经有所了解了,那今天呢,我就和大家分享一下在Android中如何使用SQLite. 现在的主流移动设备像Android.i ...
- 【leetcode】Word Ladder II(hard)★ 图 回头看
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...
- iOS设计模式——委托(delegate)
委托(delegate)也叫代理是iOS开发中常用的设计模式.我们借助于protocol(参考博文:objective-c协议(protocol))可以很方便的实现这种设计模式. 什么是代理? 苹果的 ...