Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5173   Accepted: 2614

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834

判断两球表面距离是否小于零,即球心距 - 半径1 - 半径2 <= 0,如果满足的话就合并掉,不改变答案值,然后跑一边kruskal就行。

 #include <iostream>
#include <cstdio>
#include <string>
#include <queue>
#include <vector>
#include <map>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <cmath>
#include <ctime>
using namespace std; const int SIZE = ;
int FATHER[SIZE],N,NUM;
struct Node
{
int from,to;
double cost;
}G[SIZE * SIZE];
struct
{
double x,y,z,r;
}TEMP[SIZE]; void ini(void);
int find_father(int);
void unite(int,int);
bool same(int,int);
bool comp(const Node &,const Node &);
double kruskal(void);
double dis(double,double,double,double,double,double);
int main(void)
{
while(~scanf("%d",&N))
{
if(!N)
break;
ini();
for(int i = ;i <= N;i ++)
scanf("%lf%lf%lf%lf",&TEMP[i].x,&TEMP[i].y,&TEMP[i].z,&TEMP[i].r);
for(int i = ;i <= N;i ++)
for(int j = i + ;j <= N;j ++)
{
G[NUM].from = i;
G[NUM].to = j;
G[NUM].cost = dis(TEMP[i].x,TEMP[i].y,TEMP[i].z,TEMP[j].x,TEMP[j].y,TEMP[j].z)
- TEMP[i].r - TEMP[j].r;
if(G[NUM].cost <= )
unite(i,j);
NUM ++;
}
sort(G,G + NUM,comp);
printf("%.3f\n",kruskal());
} return ;
} void ini(void)
{
NUM = ;
for(int i = ;i <= N;i ++)
FATHER[i] = i;
} int find_father(int n)
{
if(n == FATHER[n])
return n;
return FATHER[n] = find_father(FATHER[n]);
} void unite(int x,int y)
{
x = find_father(x);
y = find_father(y); if(x == y)
return ;
FATHER[x] = y;
} bool same(int x,int y)
{
return find_father(x) == find_father(y);
} bool comp(const Node & a,const Node & b)
{
return a.cost < b.cost;
} double kruskal(void)
{
double ans = ; for(int i = ;i < NUM;i ++)
if(!same(G[i].from,G[i].to))
{
unite(G[i].from,G[i].to);
ans += G[i].cost;
}
return ans;
} double dis(double x_1,double y_1,double z_1,double x_2,double y_2,double z_2)
{
return sqrt(pow(x_1 - x_2,) + pow(y_1 - y_2,) + pow(z_1 - z_2,));
}

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  2. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. Firefox常用插件

    一.Web浏览使用插件 1.Adblock Plus广告拦截插件:能够自动拦截很多弹出广告,同时支持右键拦截指定信息 2.惠惠购物助手支持各大购物网站商品实时价格比较,非常棒的网站购物利器,插件下载地 ...

  2. [Sparrow OS 设计文档连载(一)] Introduction

  3. ReentrantLock

    与synchronized相同并发性和内存语义. [新增特性]锁投票.定时锁等候.可中断锁等候.更少时间调度线程. [用法注意点]Lock必须在finally块中释放. Lock lock = new ...

  4. HttpContext及HttpContext.current

    慎用System.Web.HttpContext.Current http://www.cnblogs.com/david1989/p/3879201.html 线程编程中用到HttpContext. ...

  5. Ehcache(09)——缓存Web页面

    http://haohaoxuexi.iteye.com/blog/2121782 页面缓存 目录 1       SimplePageCachingFilter 1.1      calculate ...

  6. 内存不足(OutOfMemory)的调试分析

    32位操作系统的寻址空间是4G,其中有2G被操作系统占用,也就是说留给用户进程的内存只有2G(其中还要扣除程序加载时映像占用的部分空间,一般只有1.6G~1.8G左右可以使用). 如果进程运行中需要申 ...

  7. Asp.net使用jQuery实现数据绑定与分页

    使用jQuery来实现Gridview, Repeater等服务器端数据展示控件的数据绑定和分页.本文的关注重点是数据如何实现数据绑定. Content jQuery的强大和可用性使得其迅速的流行起来 ...

  8. ICPC-CAMP day1 D.Around the world

    Around the world 题目连接: 无 Description 给你一个n*n的矩阵,然后a[i][j]表示i,j是否有一条边 然后让你构造一个序列,使得i到(i+1)%n这两个点之间最多经 ...

  9. C#后台程序与HTML页面中JS方法互调(功能类似于Ajax中的DWR)

    此方法适用于 C#中嵌入WebBrowser(浏览器) 通过浏览器中加载的页面与C#的后台代码进行交互. 一.C#程序 1.在C#窗体中添加WebBrowser(浏览器),将页面的URL添加到浏览器中 ...

  10. Java学习笔记(4)——JavaSE

    一.HashMap HashMap以键值对的形式存储对象,关键字Key是唯一的,不重复的 1,key可以是任何对象,Value可以任何对象 2,重复的key算一个,重复添加是替换操作(会覆盖原来的元素 ...