包含了Partition函数的多种用法

以及大顶堆操作

 /*************************************************************************
> File Name: 28_KLeastNumbers.cpp
> Author: Juntaran
> Mail: JuntaranMail@gmail.com
> Created Time: 2016年08月31日 星期三 19时45分41秒
************************************************************************/ #include <stdio.h>
#include <bits/stdc++.h> using namespace std; // 大顶堆求最小K个数
typedef multiset<int, greater<int> > intSet;
typedef multiset<int, greater<int> >::iterator setIterator; void GetKLeastNumbers2(int* data, intSet& leastNumbers, int length, int k)
{
leastNumbers.clear(); if (k< || length<k)
return; for (int i = ; i < length; ++i)
{
if (leastNumbers.size() < k)
leastNumbers.insert(data[i]); else
{
setIterator Greatest = leastNumbers.begin();
if (data[i] < *(leastNumbers.begin()))
{
leastNumbers.erase(Greatest);
leastNumbers.insert(data[i]);
}
}
} for (setIterator iter = leastNumbers.begin(); iter != leastNumbers.end(); ++iter)
{
printf("%d ", *iter);
}
printf("\n");
} void swap(int* p, int* q)
{
int temp = *p;
*p = *q;
*q = temp;
} // Partition函数应用
int Partition(int* data, int length, int start, int end)
{
if (data==NULL || length<= || start< || end>=length)
return -; // 令数组第一个数字为标杆
int index = start; // 标杆与数组最后一个元素交换
swap(&data[index], &data[end]); int small = start - ;
for (index = start; index < end; ++index)
{
if (data[index] < data[end])
{
++ small;
if (small != index)
{
swap(&data[index], &data[small]);
}
}
}
++ small;
swap(&data[small], &data[end]); return small;
} // 利用Partiton实现快排
void quickSort(int* data, int length, int start, int end)
{
if (start==end || data==NULL || length<=)
return; int index = Partition(data, length, start, end);
// printf("index is %d\n", index);
if (index > start)
quickSort(data, length, start, index-);
if (index < end)
quickSort(data, length, index+, end);
} // 利用Partition寻找出现次数超过一半的数 (中位数)
int GetMoreThanHalf(int* input, int length)
{
if (input==NULL || length<=)
return -;
int start = ;
int end = length - ;
int index = Partition(input, length, start, end);
int middle = length >> ;
while (index != middle)
{
if (index > middle)
{
end = index - ;
index = Partition(input, length, start, end);
}
else
{
start = index + ;
index = Partition(input, length, start, end);
}
}
int ret = input[middle];
// 检验是否正确
int count2 = ;
for (int i = ; i < length; ++i)
{
if (input[i] == ret)
count2 ++;
}
if (count2* > length)
{
printf("middle number is %d\n", input[middle]);
return ret;
}
else
{
printf("Not Find\n");
return -;
}
} // 利用Partition寻找第K小的数
int GetKthNumber(int* input, int length, int k)
{
if (input==NULL || length<= || k<= || k>length)
return -;
int start = ;
int end = length - ;
int index = Partition(input, length, start, end);
while (index != k - )
{
if (index > k-)
{
end = index-;
index = Partition(input, length, start, end);
}
else
{
start = index + ;
index = Partition(input, length, start, end);
}
}
printf("Kth is %d\n", input[index]);
return input[index];
} // 利用Partition寻找最小K个数
void GetKLeastNumbers(int* input, int length, int* output, int k)
{
if (input==NULL || output==NULL || length<= || k<= || k>length)
{
return;
}
int start = ;
int end = length - ;
int index = Partition(input, length, start, end);
while (index != k - )
{
if (index > k-)
{
end = index - ;
index = Partition(input, length, start, end);
}
else
{
start = index + ;
index = Partition(input, length, start, end);
}
// printf("index is %d\n", index);
}
for (int i = ; i < k; ++i)
output[i] = input[i]; for (int i = ; i < k; ++i)
printf("%d ", output[i]);
printf("\n");
} int main()
{
int k = ;
int nums[] = {,,,,,,,,,};
int length = ;
int output[k] = {}; // 快速排序
quickSort(nums, length, , length-);
for (int i = ; i < length; ++i)
printf("%d ", nums[i]);
printf("\n"); // 求最小K个数
GetKLeastNumbers(nums, length, output, k); // 求第K大的数
GetKthNumber(nums, length, k); // 求数组中超过一半的数(中位数)
GetMoreThanHalf(nums, length); // 大顶堆求最小K个数
intSet leastNumbers;
GetKLeastNumbers2(nums, leastNumbers, length, k);
}

剑指Offer28 最小的K个数(Partition函数应用+大顶堆)的更多相关文章

  1. 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)

    注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...

  2. 剑指 Offer——最小的 K 个数

    1. 题目 2. 解答 2.1. 方法一--大顶堆 参考 堆和堆排序 以及 堆的应用,我们将数组的前 K 个位置当作一个大顶堆. 首先建堆,也即对堆中 [0, (K-2)/2] 的节点从上往下进行堆化 ...

  3. python剑指offer最小的K个数

    题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路: 使用快排中的partition思想. ①我们设定part ...

  4. 剑指:最小的k个数

    题目描述 输入 n 个整数,找出其中最小的 K 个数.例如输入 4,5,1,6,2,7,3,8 这 8 个数字,则最小的 4 个数字是 1,2,3,4. 解法 解法一 利用快排中的 partition ...

  5. 剑指Offer——最小的K个数

    题目描述: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 分析: 建一个K大小的大根堆,存储最小的k个数字. 先将K个数进堆 ...

  6. 剑指offer--10.最小的K个数

    边界判断,坑了一下 ----------------------------------------------- 时间限制:1秒 空间限制:32768K 热度指数:375643 本题知识点: 数组 ...

  7. 剑指Offer-29.最小的K个数(C++/Java)

    题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 分析: 最先想到的是将数组升序排列,返回前k个元素.不过排序的话效率 ...

  8. 用js刷剑指offer(最小的K个数)

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 牛客网链接 js代码 function GetLeastNumbe ...

  9. 2-剑指offer: 最小的K个数

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 代码: // 这种topN问题比较常见的是使用堆来解决,最小的k个 ...

随机推荐

  1. Javascript模块规范(CommonJS规范&&AMD规范)

    Javascript模块化编程(AMD&CommonJS) 前端模块化开发的价值:https://github.com/seajs/seajs/issues/547 模块的写法 查看 AMD规 ...

  2. jsonUtil 工具类

    package org.konghao.basic.util; import java.io.IOException; import java.io.StringWriter; import com. ...

  3. 检索COM 类工厂中CLSID 为 {00024500-0000-0000-C000-000000000046}的组件时失败

    在项目中将数据导出为Excel格式时出现“检索COM 类工厂中CLSID 为 {00024500-0000-0000-C000-000000000046}的组件时失败,原因是出现以下错误: 80070 ...

  4. 729 - The Hamming Distance Problem

      // 题意: // 输入两个整数N, H,按照字典序输出所有长度为N,恰好包含H个1的01串 // 规模:1<=H<=N<=16 // 算法A:2^N枚举,输出1的个数为H的.采 ...

  5. IOS学习经验总结--来自知乎网友

    转自知乎:http://www.zhihu.com/question/20016551 我当时刚学iOS开发的时候一样的感觉 总想知道原理 内部怎么回事 感觉在像在雾里但是iOS开发就是这样 他是封闭 ...

  6. java 正则表达式学习

    一. Java正则表达式 在程序开发中,难免会遇到需要匹配.查找.替换.判断字符串的情况发生,而这些情况有时又比较复杂. 因此,学习及使用正则表达式,便成了解决这一矛盾的主要手段. 正则表达式是一种可 ...

  7. 【M32】在未来时态下发展程序

    1.在未来时态下发展程序,就是接受“事情总会变化”的事实,并准备应对之策. 2.记住,程序的维护者通常不是最初的开发者,因此,设计和实现的时候,应该考虑别人更好地理解,修改自己的程序. 3.重要的一点 ...

  8. CSS 强制换行和禁止换行学习

    强制换行       1.word-break: break-all;       只对英文起作用,以字母作为换行依据.       2.word-wrap: break-word;   只对英文起作 ...

  9. uoj #9. 【UTR #1】vfk的数据 水题

    #9. [UTR #1]vfk的数据 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/9 Description ...

  10. 点击次数(thinkphp)

    protected function addHit($tbName, $id) { //定义变量:作为一个查询条件 $where = array( 'deleted' => 0, 'hidden ...