题目链接:

All X

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:

F(x,m) mod k ≡ c

 
Input
 
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9

1≤m≤10^10

0≤c<k≤10,000

 
Output
 
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
 
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
 
Case #1:
No
Case #2:
Yes
Case #3:
Yes
 
题意:
 
 
思路:
 
m个x组成的数可以表示为x*(1+10+10^2+...+10^m-1)=x*(10^m-1)/9;
即x*(10^m-1)/9%k==c?    x*(10^m-1)%(9*k)==9*c?
 
AC代码:
 

//#include <bits/stdc++.h>

#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
//const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=1e5+;
LL x,m,k,c;
LL mod;
LL fastmod(LL x,LL y)
{
LL ans=,base=x;
while(y)
{
if(y&)ans*=base,ans%=mod;
base*=base;
base%=mod;
y=(y>>);
}
return ans;
}
int main()
{
int t,cnt=;
scanf("%d",&t);
while(t--)
{
printf("Case #%d:\n",cnt++);
scanf("%I64d%I64d%I64d%I64d",&x,&m,&k,&c);
mod=*k;
LL fx=fastmod(,m);
LL ans=(fx*x%mod-x%mod)%mod;
if(ans==*c)printf("Yes\n");
else printf("No\n");
} return ;
}
 

hdu-5690 All X(快速幂+乘法逆元)的更多相关文章

  1. hdu-4990 Reading comprehension(快速幂+乘法逆元)

    题目链接: Reading comprehension Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  2. 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式

    1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...

  3. 2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂

    Sample Input 3 1 3 5 2 1 3 5 1 3 5 99 69   Sample Output Case #1: No Case #2: Yes Case #3: Yes Hint ...

  4. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. Happy 2004(快速幂+乘法逆元)

    Happy 2004 问题描述 : Consider a positive integer X,and let S be the sum of all positive integer divisor ...

  6. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  7. HDU4869:Turn the pokers(快速幂求逆元+组合数)

    题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...

  8. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  9. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

随机推荐

  1. sql 自连接

    这是一个部门表,里面存放了部门及其上级部门,但都放在同一张表中,我们假设现在需要用SQL查询出各部门及其上级部门!就如何做,当然,不用自连接也一样,可以如下: 我们达到预期目的!在这个查询中使用了一个 ...

  2. 【转】Android -- Looper.prepare()和Looper.loop()

    Looper.prepare()和Looper.loop() 原文地址:http://blog.csdn.net/heng615975867/article/details/9194219 Andro ...

  3. c语言-格式控制字符 %XXd 用法

    d格式字符 用来输出十进制整数,有以下几种用法: 1. %d, 按整型数据的实际长度输出. 2.  %md,m为指定输出的整型位数的宽度,如果整型数据的实际位数小于m,则左端补以空格,如果大于m,则按 ...

  4. 转载:div和flash层级关系问题

    转自:http://sin581.blog.163.com/blog/static/860578932012813112334404/     问题: ie下默认好像div层级没有flash层级高,也 ...

  5. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  6. DLX舞蹈链 hdu5046

    题意: 在N个城市选出K个城市,建飞机场(1 ≤ N ≤ 60,1 ≤ K ≤ N),N个城市给出坐标,选择这K个机场,使得从城市到距离自己最近的机场的 最大的距离 最小. 输出这个最小值. 思路: ...

  7. Swift 自己主动引用计数机制ARC

    Swift 使用自己主动引用计数(ARC)这一机制来跟踪和管理你的应用程序的内存.通常情况下,Swift 的内存管理机制会一直起着作用,你无须自己来考虑内存的管理.ARC 会在类的实例不再被使用时,自 ...

  8. Golang学习 - sort 包

    ------------------------------------------------------------ // 满足 Interface 接口的类型可以被本包的函数进行排序. type ...

  9. 分布式缓存技术redis学习(一)——redis简介以及linux上的安装

    redis简介 redis是NoSQL(No Only SQL,非关系型数据库)的一种,NoSQL是以Key-Value的形式存储数据.当前主流的分布式缓存技术有redis,memcached,ssd ...

  10. Java获取当前进程的所有线程

    public class MainClass { public static void main(String[] args) { ThreadGroup group = Thread.current ...