题意及思路:https://www.cnblogs.com/zjp-shadow/p/9562888.html

这题由于性质特殊,可以用01BFS来进行DP的转移。

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000010;
vector<int> G[maxn];
deque<int> q;
int dp[maxn], deg[maxn];
bool v[maxn];
void add(int x, int y) {
G[x].push_back(y);
deg[y]++;
}
void bfs(int s, int t) {
memset(dp, -1, sizeof(dp));
dp[s] = 0;
q.push_back(s);
while(q.size()) {
int x = q.front();
q.pop_front();
if(v[x]) continue;
v[x] = 1;
//if(x == t) return;
for (auto y : G[x]) {
if(!--deg[y]) {
if(dp[y] > dp[x] || dp[y] == -1) {
dp[y] = dp[x];
q.push_front(y);
}
} else if(dp[y] == -1) {
dp[y] = dp[x] + 1;
q.push_back(y);
}
}
}
}
int main() {
int n, m, x, y, s, t;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
add(y, x);
}
scanf("%d%d", &s, &t);
bfs(t, s);
printf("%d\n", dp[s]);
}

但是实际上,遇到有后效性的DP方程时,如果是一个DAG,一般用spfa来进行DP的状态转移,因为spfa是迭代的思想,如果所有状态都收敛了(不能更新了),就完成了转移。

思路来源:https://www.cnblogs.com/huibixiaoxing/p/7715898.html

代码:

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 1000010;
vector<int> G[maxn], G1[maxn];
int dp[maxn];
bool v[maxn];
void add(int x, int y) {
G[x].push_back(y);
G1[y].push_back(x);
}
queue<int> q;
void spfa(int s, int t) {
memset(dp, 0x3f, sizeof(dp));
dp[s] = 0;
v[s] = 1;
q.push(s);
while(q.size()) {
int x = q.front();
q.pop();
v[x] = 0;
for (auto y : G[x]) {
if(dp[y] > dp[x] + 1) {
dp[y] = dp[x] + 1;
if(!v[y]) {
q.push(y);
v[y] = 1;
}
}
}
int tmp = 0;
for (auto y : G1[x]) {
tmp = max(tmp, dp[y]);
}
if(dp[x] > tmp) {
dp[x] = tmp;
if(!v[x]) {
q.push(x);
v[x] = 1;
}
}
}
}
int main() {
int n, m, x, y, s, t;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
add(y, x);
}
scanf("%d%d", &s, &t);
spfa(t, s);
if(dp[s] == INF) dp[s] = -1;
printf("%d\n", dp[s]);
}

  

Codeforces 346D Robot Control DP spfa 01BFS的更多相关文章

  1. Codeforces 346D Robot Control(01BFS)

    题意 有一个 \(N\) 个点, \(M\) 条边的有向图, 初始有一个机器人在 \(1\) 号点. 每个时刻, 这个机器人会随机选择一条从该点出发地边并通过.当机器人到达点 \(N\) 时, 它就会 ...

  2. Codeforces346D. Robot Control

    D. Robot Control time limit per test 6 seconds memory limit per test 256 megabytes input standard in ...

  3. [Notes] Reading Notes on [Adaptive Robot Control – mxautomation J. Braumann 2015]

    Reading sources: 1.Johannes Braumann, Sigrid Brell-Cokcan, Adaptive Robot Control (ARC  ) Note: buil ...

  4. POJ 3182 The Grove [DP(spfa) 射线法]

    题意: 给一个地图,给定起点和一块连续图形,走一圈围住这个图形求最小步数 本来是要做课件上一道$CF$题,先做一个简化版 只要保证图形有一个点在走出的多边形内就可以了 $hzc:$动态化静态的思想,假 ...

  5. 值得一做》关于一道DP+SPFA的题 BZOJ1003 (BZOJ第一页计划) (normal-)

    这是一道数据范围和评测时间水的可怕的题,只是思路有点难想,BUT假如你的思路清晰,完全了解怎么该做,那就算你写一个反LLL和反SLE都能A,如此水的一道题,你不心动吗? 下面贴出题目 Descript ...

  6. BZOJ1003物流運輸 DP + SPFA

    @[DP, SPFA] Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要\(n\)天才能运完.货物运输过程中一般要转 停好几个码头.物流公司通常会设计一条固定的运 ...

  7. HDU 4085 Peach Blossom Spring 斯坦纳树 状态压缩DP+SPFA

    状态压缩dp+spfa解斯坦纳树 枚举子树的形态 dp[i][j] = min(dp[i][j], dp[i][k]+dp[i][l]) 当中k和l是对j的一个划分 依照边进行松弛 dp[i][j]  ...

  8. [Codeforces 1201D]Treasure Hunting(DP)

    [Codeforces 1201D]Treasure Hunting(DP) 题面 有一个n*m的方格,方格上有k个宝藏,一个人从(1,1)出发,可以向左或者向右走,但不能向下走.给出q个列,在这些列 ...

  9. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

随机推荐

  1. Spring MVC 配置Controller详解

    在SpringMVC中,对于Controller的配置方式有很多种,如下做简单总结 第一种 URL对应Bean如果要使用此类配置方式,需要在XML中做如下样式配置: <!-- 表示将请求的URL ...

  2. 愚蠢的sql语法错误(sum (xxx))

    sum和()之间打了一个空格,导致一致报sql语法错误,看了半天不知道怎么回事orz

  3. java 延时

    Java中主要有两种方法来实现延迟,即:Thread和Timer 1.普通延时用Thread.sleep(int)方法,这很简单.它将当前线程挂起指定的毫秒数.如try{Thread.currentT ...

  4. Python中yaml和json文件的读取和应用

    Python对yaml和json文件的读取: yaml文件读取: 首先创建一个yaml文件test.yaml import yaml   #引入包 f=open(path)  #建立Python的文件 ...

  5. Day One-Python基础

    Python第一节 安装教程就不发了,太心累了!大家可以上百度查,网上都会有 python种类 JavaPython cPython pypy 两种编码  字节码 和 机器码 unicode utf8 ...

  6. vue 路由动态传参 (多个)

    动态传参 传值页面  客户列表clientList.vue 路由 router.js 配置路由 接收参数的页面  客户详情CustomerDetails.vue 通过this.$router.para ...

  7. 怎么让小白理解intel处理器(CPU)的分类

    https://www.zhihu.com/question/32669957 目录 如何选购台式机CPU? 1. 英特尔处理器简介(本文) 1.1 聊聊Intel Tick-Tock 2. AMD处 ...

  8. UVa 548 Tree (建树+前序后序)

    Description You are to determine the value of the leaf node in a given binary tree that is the termi ...

  9. vue2.0 组件的生命周期

    vue官方文档中给出的vue生命周期的流程图 如下: 生命周期探究 对于执行顺序和什么时候执行,看上面两个图基本有个了解了.下面我们将结合代码去看看钩子函数的执行. <!DOCTYPE html ...

  10. %各位大佬的博客.tql

    线性基:https://www.cnblogs.com/ljh2000-jump/p/5869991.html#4219854 数位DP  https://blog.csdn.net/jk211766 ...