spark 笔记 9: Task/TaskContext
/**
* A unit of execution. We have two kinds of Task's in Spark:
* - [[org.apache.spark.scheduler.ShuffleMapTask]]
* - [[org.apache.spark.scheduler.ResultTask]]
*
* A Spark job consists of one or more stages. The very last stage in a job consists of multiple
* ResultTasks, while earlier stages consist of ShuffleMapTasks. A ResultTask executes the task
* and sends the task output back to the driver application. A ShuffleMapTask executes the task
* and divides the task output to multiple buckets (based on the task's partitioner).
*
* @param stageId id of the stage this task belongs to
* @param partitionId index of the number in the RDD
*/
private[spark] abstract class Task[T](val stageId: Int, var partitionId: Int) extends Serializable {
final def run(attemptId: Long): T = {
context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
context.taskMetrics.hostname = Utils.localHostName()
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
runTask(context)
def runTask(context: TaskContext): T
// Map output tracker epoch. Will be set by TaskScheduler.
var epoch: Long = -1
var metrics: Option[TaskMetrics] = None
// Task context, to be initialized in run().
@transient protected var context: TaskContext = _
// The actual Thread on which the task is running, if any. Initialized in run().
@volatile @transient private var taskThread: Thread = _
/**
* Handles transmission of tasks and their dependencies, because this can be slightly tricky. We
* need to send the list of JARs and files added to the SparkContext with each task to ensure that
* worker nodes find out about it, but we can't make it part of the Task because the user's code in
* the task might depend on one of the JARs. Thus we serialize each task as multiple objects, by
* first writing out its dependencies.
*/
private[spark] object Task {
/**
* Serialize a task and the current app dependencies (files and JARs added to the SparkContext)
*/
def serializeWithDependencies(
/**
* Deserialize the list of dependencies in a task serialized with serializeWithDependencies,
* and return the task itself as a serialized ByteBuffer. The caller can then update its
* ClassLoaders and deserialize the task.
*
* @return (taskFiles, taskJars, taskBytes)
*/
def deserializeWithDependencies(serializedTask: ByteBuffer)
/**
* A ShuffleMapTask divides the elements of an RDD into multiple buckets (based on a partitioner
* specified in the ShuffleDependency).
*
* See [[org.apache.spark.scheduler.Task]] for more information.
*
* @param stageId id of the stage this task belongs to
* @param taskBinary broadcast version of of the RDD and the ShuffleDependency. Once deserialized,
* the type should be (RDD[_], ShuffleDependency[_, _, _]).
* @param partition partition of the RDD this task is associated with
* @param locs preferred task execution locations for locality scheduling
*/
private[spark] class ShuffleMapTask(
stageId: Int,
taskBinary: Broadcast[Array[Byte]],
partition: Partition,
@transient private var locs: Seq[TaskLocation])
extends Task[MapStatus](stageId, partition.index) with Logging {
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
metrics = Some(context.taskMetrics)
var writer: ShuffleWriter[Any, Any] = null
try {
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
return writer.stop(success = true).get --HashShuffleWriter
} catch {
case e: Exception =>
if (writer != null) {
writer.stop(success = false)
}
throw e
} finally {
context.markTaskCom pleted()
}
}
/**
* A task that sends back the output to the driver application.
*
* See [[Task]] for more information.
*
* @param stageId id of the stage this task belongs to
* @param taskBinary broadcasted version of the serialized RDD and the function to apply on each
* partition of the given RDD. Once deserialized, the type should be
* (RDD[T], (TaskContext, Iterator[T]) => U).
* @param partition partition of the RDD this task is associated with
* @param locs preferred task execution locations for locality scheduling
* @param outputId index of the task in this job (a job can launch tasks on only a subset of the
* input RDD's partitions).
*/
private[spark] class ResultTask[T, U](
stageId: Int,
taskBinary: Broadcast[Array[Byte]],
partition: Partition,
@transient locs: Seq[TaskLocation],
val outputId: Int)
extends Task[U](stageId, partition.index) with Serializable {
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
metrics = Some(context.taskMetrics)
try {
func(context, rdd.iterator(partition, context))
} finally {
context.markTaskCompleted()
}
}
spark 笔记 9: Task/TaskContext的更多相关文章
- spark笔记 环境配置
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...
- Spark分区数、task数目、core数目、worker节点数目、executor数目梳理
Spark分区数.task数目.core数目.worker节点数目.executor数目梳理 spark隐式创建由操作组成的逻辑上的有向无环图.驱动器执行时,它会把这个逻辑图转换为物理执行计划,然后将 ...
- spark 笔记 15: ShuffleManager,shuffle map两端的stage/task的桥梁
无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的 ...
- spark 笔记 12: Executor,task最后的归宿
spark的Executor是执行task的容器.和java的executor概念类似. ===================start executor runs task============ ...
- spark 笔记 7: DAGScheduler
在前面的sparkContex和RDD都可以看到,真正的计算工作都是同过调用DAGScheduler的runjob方法来实现的.这是一个很重要的类.在看这个类实现之前,需要对actor模式有一点了解: ...
- spark 笔记 5: SparkContext,SparkConf
SparkContext 是spark的程序入口,相当于熟悉的'main'函数.它负责链接spark集群.创建RDD.创建累加计数器.创建广播变量. ) scheduler.initialize(ba ...
- Spark笔记——技术点汇总
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standa ...
- Spark技术内幕: Task向Executor提交的源码解析
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...
- 大数据学习——spark笔记
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } v ...
随机推荐
- 多线程编程-- part5.1 互斥锁之公平锁-释放锁
释放公平锁 1.unlock() unlock()在ReentrantLock.java中实现的,源码如下: public void unlock() { sync.release(1); } 说明: ...
- re:正则表达式,字符串处理的杀手锏
介绍 正则表达式是一种用形式化语法描述的文本匹配模式,可以进行复杂的字符串匹配. Python中的正则表达式通过re模块提供,功能比Python内置的str更强,但是速度没有str提供的方法快. 因此 ...
- deep_learning_Function_bath_normalization()
关于归一化的讲解的博客——[深度学习]Batch Normalization(批归一化) tensorflow实现代码在这个博客——[超分辨率]TensorFlow中批归一化的实现——tf.layer ...
- python爬虫练习之批量下载zabbix文档
# -*- coding: UTF-8 -*- import requests,re,time url = 'https://www.zabbix.com/documentation/3.4/zh/m ...
- java7连接数据库 网页 添加学生信息测试
石家庄铁道大学2019年秋季 2018 级课堂测试试卷(六)(10分) 课程名称: JAVA语言程序设计 任课教师: 王建民 考试时间: 150 分钟 一. 考试要求: 1登录账号 ...
- 实践:Linux用户、组和密码相关文件被破坏如何恢复系统
我们先看一下用户用户组和密码相关文件: 1 2 3 4 5 6 7 8 9 [root❄centos7 ~]☭ ll /etc/passwd* /etc/shadow* /etc/group* /et ...
- oracle表的列合并(group by)和行合并(union all)
group by select a.dn,t.dn dnt,a.BEGIN_TIME,a.R032_001,t.R032_001,a.R032_002,a.R032_003,a.R032_004, a ...
- python web开发中跨域问题的解决思路
线上环境不存在跨域问题,nginx转发 解决思路: 1.什么是跨域 在浏览器窗口中,和某个服务端通过某个 “协议+域名+端口号” 建立了会话的前提下,去使用与这三个属性任意一个不同的源提交了请求,那么 ...
- base64 转 Image
/// <summary> /// base64 转 Image /// </summary> /// <param name="base64"> ...
- mysql 8.0.18 mgr 搭建及其切换
mysql 8.0.18 mgr 搭建及其切换 一.系统安装包 yum -y install make gcc-c++ cmake bison-devel ncurses-devel readline ...