又是一道被咕了很久的题 貌似从WC2019之前咕到了现在

我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s

然后转移O(n)枚举加进来的点就比较简单啦

这个的复杂度是O(2^n*n^2)

据说有更科学的O(2^n*n)

但是显然这个做法就能过了(

详情参见PKUWC2019D1T1(大雾

代码扔这里了。

//Love and Freedom.
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define ll long long
#define inf 20021225
#define mdn 998244353
#define N 21
using namespace std;
int read()
{
int s=,f=; char ch=getchar();
while(ch<'' || ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>='' && ch<='') s=s*+ch-'',ch=getchar();
return f*s;
}
int ksm(int bs,int mi)
{
int ans=;
while(mi)
{
if(mi&) ans=1ll*ans*bs%mdn;
bs=1ll*bs*bs%mdn; mi>>=;
}
return ans;
}
int f[N][<<N],fac[N],inv[N],cnt[<<N],n,w[N];
void add(int x,int y)
{
w[x]|=<<y; w[y]|=<<x;
}
int A(int n,int m)
{
if(n<m) return ;
return 1ll*fac[n]*inv[n-m]%mdn;
}
void upd(int &x,int y){x+=x+y>=mdn?y-mdn:y;}
int main()
{
n=read(); int m=read(); fac[]=; int x,y;
for(int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%mdn;
inv[n]=ksm(fac[n],mdn-);
for(int i=n;i;i--) inv[i-]=1ll*inv[i]*i%mdn;
for(int i=;i<=m;i++) x=read(),y=read(),add(x-,y-);
for(int i=;i<n;i++) w[i]|=<<i;
f[][]=; int top=<<n;
for(int i=;i<top;i++) cnt[i]=cnt[i>>]+(i&);
for(int i=;i<n;i++) for(int s=;s<top;s++)
if(f[i][s]) for(int j=;j<n;j++) if(!((s>>j)&))
upd(f[i+][s|w[j]],1ll*f[i][s]*A(n-cnt[s]-,cnt[w[j]-(w[j]&s)]-)%mdn);
for(int i=n;i;i--) if(f[i][top-])
{
printf("%d\n",1ll*f[i][top-]*inv[n]%mdn);
break;
}
return ;
}

LOJ2540「PKUWC2018」随机算法的更多相关文章

  1. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  2. LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】

    LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...

  3. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  4. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...

  5. 【LOJ】 #2540. 「PKUWC2018」随机算法

    题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...

  6. loj#2540. 「PKUWC2018」随机算法

    传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  9. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

随机推荐

  1. ThreadLocal在Spring事务管理中的应用

    ThreadLocal是用来处理多线程并发问题的一种解决方案.ThreadLocal是的作用是提供线程的局部变量,在多线程并发环境下,提供了与其他线程隔离的局部变量.通常这样的设计的情况是因为这个局部 ...

  2. 解决IDEA输入法输入中文候选框不显示问题(亲测谷歌拼音完美解决问题)

    解决方法:关掉idea,进入idea的安装目录找到jre64文件夹重命名为jre642(随便什么名字都行)如下图 然后找到jdk安装目录下的jre文件复制到上图idea的安装目录下并改名为jre64 ...

  3. So the type system doesn’t feel so static.

    object wb{ def main(args:Array[String]){ println("Happy everyday!DATA-CENTER!") println(ne ...

  4. 圆角Panel

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Diagnostic ...

  5. LeetCode 10——正则表达式匹配

    1. 题目 2. 解答 在 回溯算法 中我们介绍了一种递归的思路来求解这个问题. 此外,这个问题也可以用动态规划的思路来解决.我们定义状态 \(P[i][j]\) 为子串 \(s[0, i)\) 和 ...

  6. xcode archive灰色,无法打包的解决办法

    问题如图: 解决办法:目前的运行配置是使用模拟器,改成“iOS Device”即可 step1: step2: 修改后archive选项变为黑色,可点击状态了

  7. Python Error: “ImportError: No module named six”,用自动安装解决依赖问题

    在初次运行带有matplotlib包的程序时,被告知了缺少模块(如标题所示).搜索调查后发现在自己安装的python中确实缺少此安装包,接下来,进行了下载.安装.运行,又少了一个模块,再下载.再运行, ...

  8. Golang new() vs make()

    对于Golang的new() 和 make()的用法有些混乱,感觉这篇资料讲解较好,翻译一下,方便学习! 原文地址:http://www.godesignpatterns.com/2014/04/ne ...

  9. 【minicap】基于图像识别的手机端UI自动化测试的截图方式更新

    minicap属于STF框架的一个工具,可以高速截图.同步手机屏幕至浏览器等   为什么用minicap截图: 经过试验,截同一个屏幕的一张图,adb shell screencap速度为2.9秒,而 ...

  10. SpringBoot使用webservice

    Pom.xml <parent> <groupId>org.springframework.boot</groupId> <artifactId>spr ...