[BZOJ3626] [LNOI2014]LCA(树链剖分)
[BZOJ3626] [LNOI2014]LCA(树链剖分)
题面
给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和。N, Q≤50000
分析
对于一个点i,我们把i到根节点的路径全部标记+1,然后从z往上找,第一个碰到的标记不为0的节点就是lca(z,i)。而i的深度恰好就是z到根节点路径上的标记和。显然这样的标记是可以叠加的,对于区间[l,r],我们把编号在[l,r]内的节点到根的路径都标记+1,那么答案就在z到根路径上的标记和。
但是这样直接做还是\(O(n^2)\)的,考虑离线。注意到标记是可减的,那么询问query(l,r,z)就相当于query(1,r,z)-query(1,l-1,z)。
那么我们分两部分维护答案,记query(1,r,z)=ansr,query(1,l-1,z)=ansl,真正的答案就是ansr-ansl.我们对于每个点,保存左端点l-1在此的询问编号,右端点同理。我们从1~n遍历每个节点i,把i到根的路径标记+1。然后看看有没有左端点在i的询问,如果有,就更新ansl,右端点同理
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 50000
#define mod 201314
using namespace std;
int n,m;
struct edge{
int from;
int to;
int next;
}E[maxn*2+5];
int head[maxn+5];
int esz=0;
void add_edge(int u,int v){
esz++;
E[esz].from=u;
E[esz].to=v;
E[esz].next=head[u];
head[u]=esz;
}
int dfn[maxn+5];
int fa[maxn+5];
int son[maxn+5];
int sz[maxn+5];
int deep[maxn+5];
int top[maxn+5];
void dfs1(int x,int f){
fa[x]=f;
sz[x]=1;
deep[x]=deep[f]+1;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=f){
dfs1(y,x);
sz[x]+=sz[y];
if(sz[son[x]]<sz[y]) son[x]=y;
}
}
}
int tim=0;
void dfs2(int x,int t){
top[x]=t;
dfn[x]=++tim;
if(son[x]) dfs2(son[x],t);
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa[x]&&y!=son[x]){
dfs2(y,y);
}
}
}
struct segment_tree{
struct node{
int l;
int r;
long long mark;
long long v;
int len(){
return r-l+1;
}
}tree[maxn*4+5];
void push_up(int pos){
tree[pos].v=tree[pos<<1].v+tree[pos<<1|1].v;
}
void push_down(int pos){
if(tree[pos].mark){
tree[pos<<1].mark+=tree[pos].mark;
tree[pos<<1|1].mark+=tree[pos].mark;
tree[pos<<1].v+=tree[pos].mark*tree[pos<<1].len();
tree[pos<<1|1].v+=tree[pos].mark*tree[pos<<1|1].len();
tree[pos].mark=0;
}
}
void build(int l,int r,int pos){
tree[pos].l=l;
tree[pos].r=r;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,pos<<1);
build(mid+1,r,pos<<1|1);
push_up(pos);
}
void update(int L,int R,long long val,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
tree[pos].mark+=val;
tree[pos].v+=val*tree[pos].len();
return;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
if(L<=mid) update(L,R,val,pos<<1);
if(R>mid) update(L,R,val,pos<<1|1);
push_up(pos);
}
long long query(int L,int R,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
return tree[pos].v;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
long long ans=0;
if(L<=mid) ans+=query(L,R,pos<<1);
if(R>mid) ans+=query(L,R,pos<<1|1);
return ans;
}
}T;
void update_route(int x,int y,int val){
int tx=top[x],ty=top[y];
while(tx!=ty){
if(deep[tx]<deep[ty]){
swap(x,y);
swap(tx,ty);
}
T.update(dfn[tx],dfn[x],val,1);
x=fa[tx];
tx=top[x];
}
if(deep[x]>deep[y]) swap(x,y);
T.update(dfn[x],dfn[y],val,1);
}
long long query_route(int x,int y){
int tx=top[x],ty=top[y];
long long ans=0;
while(tx!=ty){
if(deep[tx]<deep[ty]){
swap(x,y);
swap(tx,ty);
}
ans+=T.query(dfn[tx],dfn[x],1);
x=fa[tx];
tx=top[x];
}
if(deep[x]>deep[y]) swap(x,y);
ans+=T.query(dfn[x],dfn[y],1);
return ans;
}
struct query{
int l;
int r;
int z;
int id;
long long ansl;
long long ansr;
}q[maxn+5];
vector<int>lb[maxn+5];
vector<int>rb[maxn+5];
int main(){
int p;
scanf("%d %d",&n,&m);
for(int i=2;i<=n;i++){
scanf("%d",&p);
p++;
add_edge(i,p);
add_edge(p,i);
}
dfs1(1,0);
dfs2(1,1);
T.build(1,n,1);
for(int i=1;i<=m;i++){
scanf("%d %d %d",&q[i].l,&q[i].r,&q[i].z);
q[i].l++;
q[i].r++;
q[i].z++;
q[i].id=i;
lb[q[i].l-1].push_back(i);
rb[q[i].r].push_back(i);
}
for(int i=1;i<=n;i++){
update_route(i,1,1);
for(int j=0;j<lb[i].size();j++){
int u=lb[i][j];
q[u].ansl=query_route(q[u].z,1);
}
for(int j=0;j<rb[i].size();j++){
int u=rb[i][j];
q[u].ansr=query_route(q[u].z,1);
}
}
for(int i=1;i<=m;i++){
printf("%lld\n",(q[i].ansr-q[i].ansl)%mod);
}
}
[BZOJ3626] [LNOI2014]LCA(树链剖分)的更多相关文章
- BZOJ3626[LNOI2014]LCA——树链剖分+线段树
题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...
- bzoj3626 [LNOI2014]LCA——树链剖分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3626 思路很巧妙,把区间换成前缀和相减: 把 l ~ r 到根路径上的点的点权都+1,然后 ...
- BZOJ3626 [LNOI2014]LCA 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3626 题意概括 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节 ...
- bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. ...
- 【bzoj3626】[LNOI2014]LCA 树链剖分+线段树
题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...
- BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2050 Solved: 817[Submit][Status ...
- BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )
说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...
- bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...
- BZOJ 3626: [LNOI2014]LCA 树链剖分 线段树 离线
http://www.lydsy.com/JudgeOnline/problem.php?id=3626 LNOI的树链剖分题没有HAOI那么水,学到的东西还是很多的. 我如果现场写,很难想出来这种题 ...
随机推荐
- wepy的第一个demo
一.在node中安装相应的模块文件,查看文档 二.案例 json部分 { "usingComponents": { "van-button": ".. ...
- 安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系统
Linux安装 参照官方文档:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/inst ...
- Spark 计算人员二度关系
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...
- golang中读取文件
读文件 方式1 #利用ioutil.ReadFile 直接从文件读取到[]byte中# file, err := ioutil.ReadFile("file/test.txt") ...
- Python单例模式的设计与实现【完美版】
目录 1. 按 2. 本文地址 3. 通过继承单例父类来实现 4. 使用装饰器实现 4.1. 懒汉式 4.2. 饿汉式 4.2.1. 未加锁版 4.2.2. 加锁版 1. 按 众所周知,对象是解决继承 ...
- EF core 实现读写分离解决方案
我们公司2019年web开发已迁移至.NET core,目前有部分平台随着用户量增加,单一数据库部署已经无法满足我们的业务需求,一直在寻找EF CORE读写分离解决方案,目前在各大技术论坛上还没找到很 ...
- Linux性能优化从入门到实战:06 CPU篇:快速定位CPU瓶颈
CPU性能指标 (1)CPU使用率:1) 用户态CPU使用率(包括用户态 user 和低优先级用户态 nice).2) 系统CPU使用率.3) 等待 I/O 的CPU使用率.4) 软中断和硬 ...
- zabbix agentd错误日志解决办法
公司新上了一台服务器,我安装了zabbix_agents软件包,并复制了zabbix server端的zabbix_agentd.conf到/etc/zabbix里面并修改了相关的参数,并启动了zab ...
- 树上倍增 x
树上倍增. dfs序的做法: 思路: //f[i][j]表示dfs序中序号为i到序号为j的点之间深度最小的点的编号 dfs序[]//存0-...(id)编号 节点[]//存dfs序中所经过的节点号 d ...
- js常见的几种设计模式
一.单例模式 单例模式也称作为单子模式,更多的也叫做单体模式.为软件设计中较为简单但是最为常用的一种设计模式. 在JavaScript里,实现单例的方式有很多种,其中最简单的一个方式是使用对象字面量的 ...