2019 杭电多校 10 1003

题目链接:HDU 6693

比赛链接:2019 Multi-University Training Contest 10

Problem Description

Oipotato loves his girlfriend very much. Since Valentine's Day is coming, he decides to buy some presents for her.

There are \(n\) presents in the shop, and Oipotato can choose to buy some of them. We know that his girlfriend will possibly feel extremely happy if she receives a present. Therefore, if Oipotato gives \(k\) presents to his girlfriend, she has \(k\) chances to feel extremely happy. However, Oipotato doesn't want his girlfriend to feel extremely happy too many times for the gifts.

Formally, for each present \(i\), it has a possibility of \(P_i\) to make Oipotato's girlfriend feel extremely happy. Please help Oipotato decide what to buy and maximize the possibility that his girlfriend feels extremely happy for exactly one time.

Input

There are multiple test cases. The first line of the input contains an integer \(T (1\le T\le 100)\), indicating the number of test cases. For each test case:

The first line contains an integer \(n (1\le n\le 10 000)\), indicating the number of possible presents.

The second line contains \(n\) decimals \(P_i (0\le Pi\le 1)\) with exactly six digits after the decimal point, indicating the possibility that Oipotato's girlfriend feels extremely happy when receiving present \(i\).

It is guaranteed that the sum of \(n\) in all test cases does not exceed \(450000\).

Output

For each test case output one line, indicating the answer. Your answer will be considered correct if and only if the absolute error of your answer is less than \(10^{−6}\).

Sample Input

2
3
0.100000 0.200000 0.900000
3
0.100000 0.300000 0.800000

Sample Output

0.900000000000
0.800000000000

Solution

题意

有 \(n\) 种礼物,第 \(i\) 种礼物能让女朋友开心的概率为 \(P_i\),挑一些礼物,问让女朋友开心一次的概率最大为多少。

题解

概率 贪心

如果有概率大于等于 \(0.5\) 的礼物,输出其中最大的。

否则,对概率从大到小。暴力枚举选择前 \(k\) 大的礼物的的概率,求最大值即可。

此题有原题。见 CodeForces 442B

相关证明见官方题解:Codeforces #253 editorial

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const int maxn = 100000 + 5; double p[maxn]; int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
double ans = 0, maxa = -1;
int flag = 0;
for(int i = 0; i < n; ++i) {
scanf("%lf", &p[i]);
if(p[i] >= 0.5) {
flag = 1;
if(maxa = -1) maxa = p[i];
else maxa = max(maxa, p[i]);
}
}
if(flag) {
printf("%.6lf\n", maxa);
} else {
sort(p, p + n);
double tmp1 = p[n - 1];
double tmp2 = p[n - 1] * (1 - p[n - 2]) + p[n - 2] * (1 - p[n - 1]);
ans = tmp2;
int k = 3;
while(tmp1 < tmp2 && k <= n) {
ans = tmp2;
tmp1 = tmp2;
tmp2 = 0;
for(int i = n - 1; i >= n - k; --i) {
double tmp = 1;
for(int j = n - 1; j >= n - k; --j) {
if(j == i) {
tmp *= p[j];
} else {
tmp *= 1 - p[j];
}
}
tmp2 += tmp;
}
k ++;
}
printf("%.6lf\n", max(ans, tmp2));
}
}
return 0;
}

HDU 6693 Valentine's Day (概率)的更多相关文章

  1. HDU 3853:LOOPS(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Problem Description   Akemi Homura is a M ...

  2. HDU 3076 ssworld VS DDD 概率dp,无穷级数,oj错误题目 难度:2

    http://acm.hdu.edu.cn/showproblem.php?pid=3076 不可思议的题目,总之血量越少胜率越高,所以读取时把两人的血量交换一下 明显每一轮的胜率和负率都是固定的,所 ...

  3. HDU 5781 ATM Mechine (概率DP)

    ATM Mechine 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 Description Alice is going to take ...

  4. hdu 4762 Cut the Cake概率公式

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4762 题目大意:一个圆形蛋糕,现在要分成M个相同的扇形,有n个草莓,求n个草莓都在同一个扇形上的概率. ...

  5. HDU 5985 Lucky Coins(概率)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5985 题意:有多种类型的硬币,每种类型的硬币都有一定的数量,现在每次抛硬币,除去朝下的硬币,知道最后 ...

  6. hdu 6305 RMQ Similar Sequence——概率方面的思路+笛卡尔树

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6305 看题解,得知: 0~1内随机取实数,取到两个相同的数的概率是0,所以认为 b 序列是一个排列. 两个 ...

  7. HDU 4050 wolf5x(动态规划-概率DP)

    wolf5x Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. HDU 4865 Peter's Hobby --概率DP

    题意:第i天的天气会一定概率地影响第i+1天的天气,也会一定概率地影响这一天的湿度.概率在表中给出.给出n天的湿度,推测概率最大的这n天的天气. 分析:这是引自机器学习中隐马尔科夫模型的入门模型,其实 ...

  9. HDU 4035:Maze(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description   When w ...

随机推荐

  1. HTML5: HTML5 Canvas

    ylbtech-HTML5: HTML5 Canvas 1.返回顶部 1. HTML5 Canvas <canvas> 标签定义图形,比如图表和其他图像,您必须使用脚本来绘制图形. 在画布 ...

  2. kafka 简单安装以及java小demo

    文章目录 第1步,下载解压 kafka: 第2步,运行 kafka: 第3步,创建topic 第4步,生产者发送消息 第5步,消费者接收消息 使用 java 客户端 kafka 0.8.0版本demo ...

  3. Eclipes 安装windowbuilding

    一.找到对应版本的windowbuilder 打开这个链接:http://www.eclipse.org/windowbuilder/download.php eclipse的版本号可以在eclips ...

  4. LeetCode N皇后 & N皇后 II

    题目链接:https://leetcode-cn.com/problems/n-queens/ 题目链接:https://leetcode-cn.com/problems/n-queens-ii/ 题 ...

  5. 【Java多线程系列七】ExecutorService

    java.util.concurrent.ExecutorService接口提供了许多线程管理的方法 Method 说明 shutdown 拒绝接收新的任务,待已提交的任务执行后关闭,且宿主线程不阻塞 ...

  6. Python 字符串常用判断函数

    判断字符串常用函数: S代表某字符串 S.isalnum()  所有字符都是数字或字母,为真返回Ture,否则返回False S.isalha()     所有字符都是字母,为真返回Ture,否则返回 ...

  7. 12-vim-撤销和删除命令-02-删除文本

    删除文本 命令 英文 功能 x cut 删除光标所在字符 d(移动命令) delete 删除移动命令对应的内容 dd delete 删除光标所在行 D delete 从光标位置删除至行尾 注: 如果使 ...

  8. java性能调优01

    1.阿姆达尔定律 1.1 加速比=优化后的耗时/优化前的耗时 1.2 阿姆达尔定律   s<=1/F+(1-F)/N 其中:s为加速比,F为程序的串行化比重,n为cpu处理核数 2.调优层次(设 ...

  9. Python之变量作用域

    使用 global强制声明为全局变量

  10. 【目录】ASP.NET Core 2.1 入门教程

    ASP.NET Core 2.1 快速学习.入门系列教程,这个入门系列教程为了帮助大家快速上手ASP.NET Core. 本教程包含且不限于: 使用VS Code开发ASP.NET Core应用 AS ...