02tensorflow非线性回归以及分类的简单实用,softmax介绍
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # 使用numpy生成200个随机点
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = np.square(x_data) + noise # 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1]) # 定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1, 10]))
biases_L1 = tf.Variable(tf.zeros([1, 10]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) # 定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10, 1]))
biases_L2 = tf.Variable(tf.zeros([1, 1]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2) # 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 使用梯度下降法训练
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess:
# 变量初始化
sess.run(tf.global_variables_initializer())
for _ in range(2000):
sess.run(train_step, feed_dict={x: x_data, y: y_data}) # 获得预测值
prediction_value = sess.run(prediction, feed_dict={x: x_data})
# 画图
plt.figure()
plt.scatter(x_data, y_data)
plt.plot(x_data, prediction_value, 'r-', lw=5)
plt.show()

MNIST数据集分类简单版本(神经网络:一个输入层,一个输出层)




import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size # 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10]) # 创建一个简单的神经网络
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x, W) + b) # 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) # 初始化变量
init = tf.global_variables_initializer() # 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) #argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

02tensorflow非线性回归以及分类的简单实用,softmax介绍的更多相关文章
- Java注解的基本概念和原理及其简单实用
一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析 ...
- jQuery的几种简单实用效果
许久未分享博客,或许已生疏. 闲来无事, 分享几个jQuery简单实用的效果案例 不喜勿喷... 1.页面常用的返回顶部 <!DOCTYPE html> <html lang=&qu ...
- 经验分享:10个简单实用的 jQuery 代码片段
尽管各种 JavaScirpt 框架和库层出不穷,jQuery 仍然是 Web 前端开发中最常用的工具库.今天,向大家分享我觉得在网站开发中10个简单实用的 jQuery 代码片段. 您可能感兴趣的相 ...
- 简单实用的PHP防注入类实例
这篇文章主要介绍了简单实用的PHP防注入类实例,以两个简单的防注入类为例介绍了PHP防注入的原理与技巧,对网站安全建设来说非常具有实用价值,需要的朋友可以参考下 本文实例讲述了简单实用的PHP防注 ...
- php简单实用的操作文件工具类(创建、移动、复制、删除)
php简单实用好用的文件及文件夹复制函数和工具类(创建.移动.复制.删除) function recurse_copy($src,$dst) { // 原目录,复制到的目录 $dir = opend ...
- 基于Bootstrap简单实用的tags标签插件
http://www.htmleaf.com/jQuery/ jQuery之家 自由分享jQuery.html5和css3的插件库 基于Bootstrap简单实用的tags标签插件
- C#_简单实用的翻页
简单实用的生成翻页HTML辅助类 C# using System.Text; namespace ClassLibrary { /// <summary> /// /// </sum ...
- 简单实用的Windows命令(一)
前几天新买了一台笔记本电脑,使用了一下几个简单的查看电脑配置的命令,觉得非常的不错,在此记录一下 一:运行命令的方式有两种 1:使用快捷键WIN+R,然后在弹出的“运行”对话框中输入对应的命令 2:在 ...
- 简单实用的Windows命令(二)
昨天简单的记录了几个非常简单实用的Windows命令,不过我又想起来还有两个我在实际的工作中也是经常用到的命令——PING和IPCONFIG,不过我在工作中的使用都是非常简单的,用PING命令检测对应 ...
随机推荐
- 笨办法学Python(learn python the hard way)--练习36-37
练习37 1.Keywords(关键字) anddel fromnotwhileaselifglobal orwithassert elseifpass yield break except impo ...
- CSS札记(一):CSS选择器
一.语法规则 选择器{ 属性1:属性值1; 属性2:属性值2; ...... } /*注释*/ 二.如何在html中应用CSS 1. 外部引用css文件 css文件:css/layout.css(cs ...
- Linux shell - ps,wc命令用法
例1. 查看Oracle数据库活动进程LOCAL=NO,输出行数 oracle@sha> ps -ef|grep LOCAL=NO|wc -l 15 解释:ps -ef是查看所有的进程的 然后用 ...
- ORACLE DG临时表空间管理
实施目标:由于磁盘空间不足,将主库的临时表空间修改位置 standby_file_management 管理方式:AUTO SQL> show parameter standby_file NA ...
- iOS即时通讯之CocoaAsyncSocket源码解析五
接上篇:iOS即时通讯之CocoaAsyncSocket源码解析四 原文 前言: 本文为CocoaAsyncSocket Read篇终,将重点涉及该框架是如何利用缓冲区对数据进行读取. ...
- LongAccumulator 源码分析
LongAccumulator LongAccumulator 能解决什么问题?什么时候使用 LongAccumulator? 1)LongAccumulator 的逻辑和 LongAdder 基本类 ...
- node+express 发送get请求
var express = require('express') , app = express(); var querystring = require('querystring'); var ut ...
- MVC Html.AntiForgeryToken(); 防止跨站伪造请求(建议所有表单提交都加这个)
视图页面from表单中添加 @Html.AntiForgeryToken(); 然后每个表单提交的时候都会带__RequestVerificationToken 字段 后端控制器验证时添加 [Val ...
- Angular5 import interface 报错:XXX is not a module
在项目里定义了一个interface,device.ts.然后在component.ts中要使用这个interface,import之后,VSCode报错:‘xxx/xxx/xxx/device.ts ...
- 获取文件夹中前N个文件
@echo off set input="list.txt" set srcDir="%1" set /a fileCount=10 set /a curInd ...
