代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(a);--i)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline LL read(){
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
} const LL MAXN=10000000005;
const LL MOD=2999999;
LL n,prm[200005],cnt;
LL num[200005],g[200005],tot;
bool vis[200005];
struct Hash_Table{
int head[MOD+5],nxt[200005],siz;
LL to[200005],val[200005];
inline void insert(LL x,LL y){
++siz;
nxt[siz]=head[x%MOD];
to[siz]=y;
val[siz]=x;
head[x%MOD]=siz;
}
inline LL operator [] (LL x){
for(register int i=head[x%MOD];i;i=nxt[i])
if(val[i]==x) return to[i];
}
}mp; void pre_process(LL n){
rin(i,2,n){
if(!vis[i]) prm[++cnt]=i;
for(register int j=1;j<=cnt&&i*prm[j]<=n;++j){
vis[i*prm[j]]=1;
if(i%prm[j]==0) break;
}
}
} int main(){
n=read();
pre_process((LL)(sqrt(n)+0.5));
LL nxti;
for(register LL i=1;i<=n;i=nxti){
nxti=n/(n/i)+1;
num[++tot]=n/i;
mp.insert(num[tot],tot);
g[tot]=num[tot]-1;
}
rin(i,1,cnt){
rin(j,1,tot){
if(prm[i]*prm[i]>num[j]) break;
int k=mp[num[j]/prm[i]];
g[j]-=g[k]-(i-1);
}
}
printf("%lld",g[1]);
return 0;
}

Min_25筛初级应用:求$[1,n]$内质数个数的更多相关文章

  1. LOJ6053 简单的函数(min_25筛)

    题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...

  2. UOJ188 Sanrd Min_25筛

    传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\) ...

  3. 关于 min_25 筛的入门以及复杂度证明

    min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人 ...

  4. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

  5. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  6. Min_25 筛

    Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\( ...

  7. 51nod 1965 奇怪的式子——min_25筛

    题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \ ...

  8. LOJ3069. 「2019 集训队互测 Day 1」整点计数(min_25筛)

    题目链接 https://loj.ac/problem/3069 题解 复数真神奇. 一句话题意:令 \(f(x)\) 表示以原点 \((0, 0)\) 为圆心,半径为 \(x\) 的圆上的整点数量, ...

  9. 51nod1965. 奇怪的式子(min_25筛)

    题目链接 http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 题解 需要求的式子显然是个二合一形式,我们将其拆开,分别计算 \(\ ...

随机推荐

  1. [转帖]Ubuntu忘记超级用户root密码,重新设置密码

    Ubuntu忘记超级用户root密码,重新设置密码 版权声明:本文为博主原创文章,转载必须指明出处. https://blog.csdn.net/weixin_37909391/article/det ...

  2. [转帖]站点部署,IIS配置优化指南

    站点部署,IIS配置优化指南 https://www.cnblogs.com/heyuquan/p/deploy-iis-set-performance-guide.html 挺值得学习的 毕竟之前很 ...

  3. Layui数据表格模型

    视图模型 package com.meiyou.model; import org.springframework.context.annotation.Bean; import java.io.Se ...

  4. docker安装教程-centos

    Docker 要求CentOS 系统的内核版本在3.10以上,查看本页面的前提条件来验证你的CentOS 版本是否支持Docker . 1.通过uname -r 命令查看你当前的内核版本 uname ...

  5. Vue 基础语法入门(转载)

    使用vue.js原文介绍:Vue.js是一个构建数据驱动的web界面库.Vue.js的目标是通过尽可能简单的API实现响应式数据绑定和组合的视图组件.vue.js上手非常简单,先看看几个例子: 例一: ...

  6. 090、ELK完成部署和使用 (2019-05-13 周二)

    参考https://www.cnblogs.com/CloudMan6/p/7787870.html   上节我们已经部署了容器化的ELK,本节我们学习如何将日志导入ELK并进行图形化展示.   几乎 ...

  7. C语言IOCP

    C语言的IOCP example #include <winsock2.h> #include <ws2tcpip.h> #include <mswsock.h> ...

  8. 关于Vue父子组件传值(复杂数据类型的值)的细节点

    vue 父子组件传值是很常见的,多数情况下都是父传递给子的值是基础数据类型,如string,number,boolean, 当父组件值被修改时,子组件能够实时的作出改变. 如果父子传值的类型是复杂数据 ...

  9. kbd_mode - 显示或者设置键盘模式

    总览 (SYNOPSIS) kbd_mode [ -auks ] 描述 (DESCRIPTION) 如果 没有 参数 kbd_mode 会 显示 当前 键盘 的 模式, 如果 有 参数, 它会把 键盘 ...

  10. Linux--目录管理与文件管理--02

    ******Linux目录结构与目录管理******* 一.Linux目录结构: 1.目录创建规则:FHS文件系统层次化标准 指定了Linux操作系统的哪些目录是一定要具备的 2.目录的结构 树形结构 ...