Description

邱老师是妖怪爱好者,他有n只妖怪,每只妖怪有攻击力atk和防御力dnf两种属性。邱老师立志成为妖怪大师,于
是他从真新镇出发,踏上未知的旅途,见识不同的风景。环境对妖怪的战斗力有很大影响,在某种环境中,妖怪可
以降低自己k×a点攻击力,提升k×b点防御力或者,提升自己k×a点攻击力,降低k×b点防御力,a,b属于正实数
,k为任意实数,但是atk和dnf必须始终非负。妖怪在环境(a,b)中的战斗力为妖怪在该种环境中能达到的最大攻击
力和最大防御力之和。strength(a,b)=max(atk(a,b))+max(dnf(a,b))环境由a,b两个参数定义,a,b的含义见前
文描述。比如当前环境a=3,b=2,那么攻击力为6,防御力为2的妖怪,能达到的最大攻击力为9,最大防御力为6。
所以该妖怪在a=3,b=2的环境下战斗力为15。因此,在不同的环境,战斗力最强的妖怪可能发生变化。作为一名优
秀的妖怪训练师,邱老师想发掘每一只妖怪的最大潜力,他想知道在最为不利的情况下,他的n只妖怪能够达到的
最强战斗力值,即存在一组正实数(a,b)使得n只妖怪在该环境下最强战斗力最低。
 

Input

第一行一个n,表示有n只妖怪。接下来n行,每行两个整数atk和dnf,表示妖怪的攻击力和防御力。
1≤n≤10^6, 0<atk,dnf≤10^8

Output

输出在最不利情况下最强妖怪的战斗力值,保留4位小数。

Sample Input

3
1 1
1 2
2 2

Sample Output

8.0000

Solution

这题好像很多种做法。下面介绍一种。

凸包。

对于一个固定的k,那么a,b的取值范围是在一条第一象限的线段上。而最大化的目标其实就是这条线段和x,y轴的截距之和。

那么可以证明,能贡献答案的点一定在上凸壳上。对于凸包上的每一个点,考虑用前后的两条直线去截它然后贡献答案。对于在中间的直线可以通过计算得出最优解。

(计算过程因为这里不是markdown编辑器公式不是那么好打所以就不推了,大概就是把直线方程设出来,根据直接过(a,b)点这个条件然后消掉一个未知量,最后把最大化的东西写出来发现可以用基本不等式啥的搞一搞就好了)

Code

 #include <cstdio>
#include <cmath>
#include <algorithm> #define R register
#define maxn 1000010
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
typedef double db;
struct Poi {
db x, y;
inline bool operator < (const Poi &that) const {return x < that.x || (x == that.x && y < that.y);}
inline Poi operator - (const Poi &that) const {return (Poi) {x - that.x, y - that.y};}
inline db operator * (const Poi &that) const {return x * that.y - y * that.x;}
} p[maxn], st[maxn];
db slope(R Poi x) {return x.y / x.x;}
int main()
{
// freopen("in.in", "r", stdin);
R int n; scanf("%d", &n);
for (R int i = ; i <= n; ++i) scanf("%lf%lf", &p[i].x, &p[i].y);
std::sort(p + , p + n + );
st[] = p[]; R int top = ;
for (R int i = ; i <= n; ++i)
{
while (top > && (p[i] - st[top - ]) * (st[top] - st[top - ]) <= ) --top;
st[++top] = p[i];
}
R db ans = 1.0 / 0.0;
for (R int i = ; i <= top; ++i)
{
R db lef = i == ? : slope(st[i] - st[i - ]);
R db rig = i == top ? -1.0 / 0.0 : slope(st[i + ] - st[i]);
R db k = -sqrt(slope(st[i]));
if (lef >= k && k >= rig)
cmin(ans, st[i].x + st[i].y - k * st[i].x - st[i].y / k);
if (i > )
{
k = slope(st[i] - st[i - ]);
cmin(ans, st[i].x + st[i].y - k * st[i].x - st[i].y / k);
}
}
printf("%.4lf\n", ans);
return ;
}

【BZOJ4570】 [Scoi2016]妖怪的更多相关文章

  1. BZOJ4570: [Scoi2016]妖怪

    题目传送门 4570: [Scoi2016]妖怪 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 491 Solved: 125 [Submit][Sta ...

  2. [Bzoj4570][Scoi2016]妖怪(右上凸包)

    4570: [Scoi2016]妖怪 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1110  Solved: 336[Submit][Status][ ...

  3. [BZOJ4570][SCOI2016]妖怪(凸包)

    两种做法,前一种会TLE. 第一种是高一数学题做法,设一个妖怪的atk和dnf分别为x和y,则它在(a,b)环境下的战斗力为x+y/a*b+y+x/a*b. 设t为b/a,则战斗力即$f(x,y,t) ...

  4. BZOJ4570 SCOI2016妖怪(三分)

    strength=atk*(1+b/a)+dnf*(1+a/b).设a/b=x,可以发现这是一个关于x的对勾函数.开口向上的一堆凸函数取max还是凸函数,三分即可. 然而无良出题人既卡精度又卡时间.众 ...

  5. 2018.10.15 bzoj4570: [Scoi2016]妖怪(凸包)

    传送门 不得不说这题有点东西啊. 看到题第一眼二分,用二次函数求范围来进行checkcheckcheck,20分滚粗了233. 于是开始思考正解. 发现可以把每只怪物的二元组属性看成二维坐标. 这时对 ...

  6. BZOJ 4570: [Scoi2016]妖怪

    二次联通门 : BZOJ 4570: [Scoi2016]妖怪 二次联通门 : luogu P3291 [SCOI2016]妖怪 LibreOJ : LibreOJ  #2015. 「SCOI2016 ...

  7. 【bzoj4570 scoi2016】妖怪

    题目描述 邱老师是妖怪爱好者,他有n只妖怪,每只妖怪有攻击力atk和防御力dnf两种属性.邱老师立志成为妖怪大师,于是他从真新镇出发,踏上未知的旅途,见识不同的风景. 环境对妖怪的战斗力有很大影响,在 ...

  8. BZOJ4570:[SCOI2016]妖怪——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4570 邱老师是妖怪爱好者,他有n只妖怪,每只妖怪有攻击力atk和防御力dnf两种属性.邱老师立志成 ...

  9. P3291 [SCOI2016]妖怪

    传送门 我数学的确白学了--这种题目竟然一点思路都没有-- 首先可以把每个妖怪看成二维平面上的一个点,那么每一个环境\((a,b)\)就可以看成一条斜率\(k=-\frac{b}{a}\)的过该点的直 ...

随机推荐

  1. Studio 3T 破解教程

    亲测可用 ,且小编一直在使用 1.创建文件studio3t.bat 并将下面这段内容复制 @echo off ECHO 重置Studio 3T的使用日期...... FOR /f "toke ...

  2. python 并发编程 基于线程池实现并发的套接字通信

    不应该让服务端随着 并发的客户端数量增多,而无数起线程,应该用线程池,限制线程数量,控制最大并发数 io密集型程序,最大并发数是2 客户端 from socket import * client = ...

  3. 【Linux 网络编程】OSI七层模型

    OSI(Open System Interconnection)开放系统互联模型(1)应用层: 应用层与应用程序界面沟通,以达到展示给用户的目的.(2)表示层: 表示层对网络传输的数据进行交换,使得多 ...

  4. 优秀编程学习网站&博文记录

    记录优秀讲解知识点博客内容,侵删! 编程者学习网站 LearnKu终身编程者的知识社区 自动化测试内容 Python 接口自动化测试 应用开源接口网站:https://httpbin.org/#/St ...

  5. linux tricks 之 ALIGN解析.

    ------------------------------------------- 本文系作者原创, 欢迎大家转载! 转载请注明出处:netwalker.blog.chinaunix.net -- ...

  6. 《一头扎进》系列之Python+Selenium自动化测试框架实战篇6 - 价值好几K的框架,呦!这个框架还真牛叉哦!!!

    1. 简介 本文开始介绍如何通过unittest来管理和执行测试用例,这一篇主要是介绍unittest下addTest()方法来加载测试用例到测试套件中去.用addTest()方法来加载我们测试用例到 ...

  7. git 笔记总结

    一 创建版本库 (1) $ mkdir learngit $ cd learngit $ pwd /Users/michael/learngit (2) git init 二 提交文件 git sta ...

  8. 最大熵与EM算法

    一.熵.联合熵(相当于并集).条件熵.互信息 1.熵是什么? (0)信息量:信息的度量p(xi).信息量和概率成反比,熵是信息量的期望. X是一个随机变量,可能取值有很多个.熵是信息量的期望.熵反应的 ...

  9. websocket之拨云见雾

    websocket是基于http相应的特性弥补其不足(就是个socket,不再是一次请求一次相应) 但缺点就是只有在版本较高的浏览器才支持websocket. 浏览器: <script type ...

  10. 一文看懂HttpServletResponse

    https://www.jianshu.com/p/8bc6b82403c5 Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的resp ...