[BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树
分析
根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取。
建出圆方树后,因为圆方树上一条路径的两个端点(圆点)不能作为切换点,并且路径上其他的圆点都被两个路径上的点双连通分量所包含,可以发现,如果把方点的权值设为这个点双连通分量的\(siz\),圆点的权值设为\(-1\),那么圆方树上所有两个端点都是圆点的路径的权值和就是答案。这个问题可以通过考虑每个结点在多少条路径上来解决。
时间复杂度为\(O(n)\)。
代码
#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef __int128 LL;
using std::cin;
using std::cout;
using std::endl;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void write(LL x){
if(x/10) write(x/10);
putchar(x%10+'0');
}
void writeln(LL x){
write(x);
putchar('\n');
}
const int MAXN=1e6+5;
const int MAXM=2e6+5;
int n,m,ecnt,head[MAXN<<1];
int dfn[MAXN],low[MAXN],tot;
int sta[MAXN],top;
int cnt;
int totsiz,siz[MAXN<<1];
LL ans;
bool vis[MAXN<<1];
std::vector<int> vdcc[MAXN];
struct Edge{
int to,nxt;
}e[MAXM<<2];
inline void add_edge(int bg,int ed){
++ecnt;
e[ecnt].to=ed;
e[ecnt].nxt=head[bg];
head[bg]=ecnt;
}
void tarjan(int x){
dfn[x]=low[x]=++tot;
sta[++top]=x;
trav(i,x){
int ver=e[i].to;
if(!dfn[ver]){
tarjan(ver);
low[x]=std::min(low[x],low[ver]);
if(low[ver]>=dfn[x]){
++cnt;int las=0;
vdcc[cnt].push_back(x);
while(las!=ver){
las=sta[top];
vdcc[cnt].push_back(sta[top]);
--top;
}
}
}
else low[x]=std::min(low[x],dfn[ver]);
}
}
int getsiz(int x,int pre){
int ret=0;
trav(i,x){
int ver=e[i].to;
if(ver==pre) continue;
ret+=getsiz(ver,x);
}
if(x<=n) ++ret;
return ret;
}
void dfs(int x,int pre){
vis[x]=true;
trav(i,x){
int ver=e[i].to;
if(ver==pre) continue;
dfs(ver,x);
if(x<=n) ans-=1ll*siz[ver]*siz[x]*2;
else ans+=1ll*siz[ver]*siz[x]*(LL)vdcc[x-n].size()*2;
siz[x]+=siz[ver];
}
if(x<=n) ans-=1ll*(siz[x]+1)*(totsiz-siz[x])*2-2,++siz[x];
else ans+=1ll*siz[x]*(totsiz-siz[x])*(LL)vdcc[x-n].size()*2;
}
int main(){
n=read(),m=read();
rin(i,1,m){
int u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
rin(i,1,n){
if(dfn[i]) continue;
if(!head[i]){
vdcc[++cnt].push_back(i);
continue;
}
top=0;tarjan(i);
}
ecnt=0;memset(head,0,sizeof head);
rin(i,1,cnt){
rin(j,0,(int)vdcc[i].size()-1){
add_edge(n+i,vdcc[i][j]);
add_edge(vdcc[i][j],n+i);
}
}
rin(i,1,n){
if(vis[i]) continue;
totsiz=getsiz(i,0);
dfs(i,0);
}
writeln(ans);
return 0;
}
[BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树的更多相关文章
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...
- 【APIO2018】铁人两项(圆方树,动态规划)
[APIO2018]铁人两项(圆方树,动态规划) 题面 UOJ 洛谷 BZOJ 题解 嘤嘤嘤,APIO的时候把一个组合数写成阶乘了,然后这题的70多分没拿到 首先一棵树是很容易做的,随意指定起点终点就 ...
- 洛谷P4630 [APIO2018] Duathlon 铁人两项 (圆方树)
圆方树大致理解:将每个点双看做一个新建的点(方点),该点双内的所有点(圆点)都向新建的点连边,最后形成一棵树,可以给点赋予点权,用以解决相关路径问题. 在本题中,方点点权赋值为该点双的大小,因为两个点 ...
- 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】
题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...
- 【APIO 2018】铁人两项(圆方树)
题目链接 题意大概是,求有多少三元组$(s,c,f)(s \neq c, c \neq f, s \neq f)$,满足从$s$到$f$有一条简单路径经过$c$. 得到结论: 点双中任意互不相同的三个 ...
- 洛谷4630APIO2018铁人两项(圆方树+dp)
QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我 ...
- P4630-[APIO2018]Duathlon铁人两项【圆方树】
正题 题目链接:https://www.luogu.com.cn/problem/P4630 题目大意 \(n\)个点\(m\)条边的一张无向图,求有多少对三元组\((s,c,f)\)满足\(s\ne ...
随机推荐
- 【Linux 网络编程】端口
(1)众所周知的端口:0~1023,这些端口由IANA分配和控制它们紧密绑定用于一些服务.常用这些端口的通讯 明确表明了某些协议.例如:21端口为ftp服务端口. (2)注册端口:1024~49 ...
- MySQL5.6解压版服务无法启动—系统错误1067
记录一下今天被坑了一下午的BUG 就从半个月前说起吧 当时....................................................................... ...
- Hbase 三维存储
hbase所谓的三维有序存储的三维是指:rowkey(行主键),column key(columnFamily+qualifier),timestamp(时间戳)三部分组成的三维有序存储. 1.row ...
- shiro三连斩之概念
1, 什么是Shiro? Shiro是一个安全框架,用于解决系统的认证和授权问题,同时提供了会话管理,数据加密,与WEB集成,缓存等机制. Authentication:身份认证/登录,验证用户是不是 ...
- a++和++a的区别
a++是先执行表达式后再自增,执行表达式时使用的是a的原值.++a是先自增再执行表达示,执行表达式时使用的是自增后的a.例:int a=0printf("%d",a++); //输 ...
- 不要64 数位DP
Problem Description 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来 ...
- kafka 教程(一)-初识kafka
消息队列 MQ 消息队列就是 消息 message 加 队列 queue,是一种消息传输的容器,提供生产和消费 API 来存储和获取消息. 消息队列分两种:点对点(p2p).发布订阅(pub/sub) ...
- linux命令 集合
ps:查看所有进程 // -e :显示所有进程:-f:代表全格式 ps -ef | grep python :查看后台运行的python程序,| 表示管道,grep表示筛选 & 符号:后台执行 ...
- npm学习(五)之使用package.json
使用package.json 管理本地安装的npm包的最佳方法是创建一个package.json文件. 一个packagejson文件: 列出项目所依赖的包. 允许使用语义版本控制规则指定项目可以使用 ...
- PhpStorm 2017.3-2018.2 汉化包
JetBrains 系列软件汉化包 关键字: Android Studio 3.0-3.1.3 汉化包 CLion 2018.1-2018.2 汉化包 GoLand 2017.3.2-2018.2 汉 ...