numpy:

是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库
简单来说:就是支持一维数组和多维数组的创建和操作,并有丰富的函数库。

直接看例子

一维数组:

k=np.array([1,2,3,4])
np.ndim(k) #查看维数
1
np.shape(k) #显示维度的元素个数
(4,)
k.size #总共多少个数字
4

二维数组:

m=np.array([[1,2,3,4],[0.1,0.2,0.3,0.4]])
np.shape(m) #
(2, 4) #两个维度,一个维度4个数字
m
array([[1. , 2. , 3. , 4. ],
[0.1, 0.2, 0.3, 0.4]])
m.size
8

m[:,0:2] #显示每个维度里面第一和第二个数字

array([[1. , 2. ],
[0.1, 0.2]])

下面看看一个图

pandas

是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的,它本身有很多的函数去处理维度层面的数据。

例如:

datas=pd.date_range('20191125',periods=6)
df=pd.DataFrame(np.random.randn(6,4),index=datas,columns=list('abcd')) #通过numpy生成(6,4)的随机数字
df
a b c d
2019-11-25 -0.050400 1.399334 -0.747377 -0.246388
2019-11-26 -1.737346 -0.398420 -0.109420 0.532931
2019-11-27 1.960727 -0.267495 -0.069288 0.071406
2019-11-28 0.430069 -1.064840 -0.046383 1.358375
2019-11-29 -0.648332 -1.448899 -1.246229 -0.331214
2019-11-30 -0.468561 -0.995754 0.750662 0.335533

查看某列,某行数据,有个缺陷:写了行不能写列,写了列不能写行

df['a'] #查看a名称列的数据
2019-11-25 -0.050400
2019-11-26 -1.737346
2019-11-27 1.960727
2019-11-28 0.430069
2019-11-29 -0.648332
2019-11-30 -0.468561
Freq: D, Name: a, dtype: float64
#查看某行或者某几行数据

df['2019-11-25':'2019-11-28'] #注意
                 a        b         c       d
2019-11-25 -0.050400 1.399334 -0.747377 -0.246388
2019-11-26 -1.737346 -0.398420 -0.109420 0.532931
2019-11-27 1.960727 -0.267495 -0.069288 0.071406
2019-11-28 0.430069 -1.064840 -0.046383 1.358375
df['2019-11-25':'2019-11-25'] #注意
                a       b       c           d
2019-11-25 -0.0504 1.399334 -0.747377 -0.246388

重要方法一:loc  根据数组里面存在的元素查找需要的部分

下面以df为例子
datas=pd.date_range('20191125',periods=6)
df=pd.DataFrame(np.random.randn(6,4),index=datas,columns=list('abcd'))
df
a b c d
2019-11-25 -0.050400 1.399334 -0.747377 -0.246388
2019-11-26 -1.737346 -0.398420 -0.109420 0.532931
2019-11-27 1.960727 -0.267495 -0.069288 0.071406
2019-11-28 0.430069 -1.064840 -0.046383 1.358375
2019-11-29 -0.648332 -1.448899 -1.246229 -0.331214
2019-11-30 -0.468561 -0.995754 0.750662 0.335533

df.loc['2019-11-25':'2019-11-25','a':'b'] #查看日期2019-11-25的 a,b两列
               a        b
2019-11-25 -0.0504 1.399334

#需要取行中不连续的,要使用index,例如上面的index=datas,相当于把时间放入一个列表里面

df.loc[datas[0::2],'a':'b'] 
               a          b
2019-11-25 -0.050400 1.399334
2019-11-27 1.960727 -0.267495
2019-11-29 -0.648332 -1.448899

重要方法之二:iloc,它的原理将行列转化成列表的索引表示

df.iloc[0:1,1:2] #就不会出现数组里面的元素了
b
2019-11-25 1.399334
df.iloc[::2,0:2]
a b
2019-11-25 -0.050400 1.399334
2019-11-27 1.960727 -0.267495
2019-11-29 -0.648332 -1.448899

pandas重要方法之三:groupby 根据某个列值取排列某个列或者多个列,用来计算

>>> df1=pd.DataFrame({'Data1':np.random.randint(0,10,5),'Data2':np.random.randint(10,20,5),'key1':list('aabba'),'key2':list('xyyxy')})
>>> df1
Data1 Data2 key1 key2
0 7 15 a x
1 3 11 a y
2 3 18 b y
3 6 15 b x
4 9 10 a y 根据单列来对单列分组计算
>>> mm=df1['Data1'].groupby(df1['key1'])
查看mm的分组情况

>>> mm.groups #'key1'列排序后就两个字符串 a,b 然后分别根据a,b来对'Data1'列进行分组

{'a': Int64Index([0, 1, 4], dtype='int64'), 'b': Int64Index([2, 3], dtype='int64')}

#对mm进行求平均

>>> mm.mean()
key1
a 6.333333
b 4.500000
Name: Data1, dtype: float64

#根据多列对多列分组

>>> df1.groupby([df1['key1'],df1['key2']]).sum()

Data1    Data2
key1 key2
a     x       7        15
      y       12       21
b     x       6        15
      y       3        18

根据多列对多列分组看下图

python模块之numpy,pandas基本用法的更多相关文章

  1. python模块之numpy

    Numpy是一个第三方库,是数组相关的运算 通过pip安装:pip install numpy Anaconda python的一个科学计算发行版本,安装后将不必单独安装numpy,下面的库模块也将不 ...

  2. python模块之numpy与pandas

    一.numpy numpy是python数据分析和机器学习的基础模块之一.它有两个作用:1.区别于list列表,提供了数组操作.数组运算.以及统计分布和简单的数学模型:2.计算速度快[甚至要由于pyt ...

  3. python 安装anaconda, numpy, pandas, matplotlib 等

    如果没安装anaconda,则这样安装这些库: pip install numpy pip install pandas pip install matplotlib sudo apt-get ins ...

  4. Python——数据分析,Numpy,Pandas,matplotlib

    由于图片内容太多,请拖动至新标签页再查看

  5. python库之numpy学习---nonzero()用法

    当使用布尔数组直接作为下标对象或者元组下标对象中有布尔数组时,都相当于用nonzero()将布尔数组转换成一组整数数组,然后使用整数数组进行下标运算. nonzeros(a)返回数组a中值不为零的元素 ...

  6. 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark

    有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...

  7. Python之路-numpy模块

    这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...

  8. Python学习day18-常用模块之NumPy

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  9. Ipython自动导入Numpy,pandas等模块

    一.引言 最近在学习numpy,书上要求安装一个Ipythpn,可以自动导入Numpy,pandas等数据分析的模块,可是当我安装后,并不能自动导入numpy模块,还需要自己import.我就去查了一 ...

随机推荐

  1. HTML基础入门学习

    上一篇给大家介绍了学习HTML的准备工作,本文开始带大家步入HTML的学习 一.HTML基础 网页的组成: HTML:页面构成 css:页面样式表现 JavaScript:交互行为 HTML简介: H ...

  2. shapefile文件数据结构

    头部 点 线 面 序号 x,y,... 线 序号 1,2 面 序号 1,2,3 拓扑检查 ... <GIS数据结构与算法>

  3. Delphi 清理程序内存

    procedure ClearMemory;begin        if Win32Platform = VER_PLATFORM_WIN32_NT then        begin        ...

  4. delphi for DirectUI界面库

    下面是form代码: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Cont ...

  5. 20180820-Java 抽象类

    Java 抽象类 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类. 抽象类除了不 ...

  6. 解决webpack打包vue项目后,部署完成后,刷新页面页面404

    1.url不动式url完全不动,即你的页面怎么改变,怎么跳转url都不会改变.这种情况的原理 就是纯ajax拿到页面后替换原页面中的元素,刷新页面就是首页 2.带hash(#)式这种相对于第一种的话刷 ...

  7. 一些比较好的blogs

    01Trie水过普通平衡树 MinMax容斥 Trie与可持久化Trie 圆方树 CDQ分治 网络流 有上下界的网络流 Mobius函数 组合数学盒子小球 dsu on tree VFK大爷的反演课件 ...

  8. CDN-template

    ylbtech-CDN: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9.返回顶部   10.返 ...

  9. JS对象—字符串总结(创建、属性、方法)

    1.创建字符串     1.1 new String(s)         String和new一起使用,创建的是一个字符串对象,存放的是字符串s的表示.     1.2 String(s)     ...

  10. 简单入门爬斗鱼颜值区妹子照片 v1.1

    这是个比较简单的入门爬虫.基于python3. urllib,urllib2,python3中用urllib.request代替,使用方法基本一致. #python3 import urllib.re ...