本次Octave仿真解决的问题是,根据两门入学考试的成绩来决定学生是否被录取,我们学习的训练集是包含100名学生成绩及其录取结果的数据,需要设计算法来学习该数据集,并且对新给出的学生成绩进行录取结果预测。

首先,我们读取并绘制training set数据集:

%% Initialization
clear ; close all; clc %% Load Data
% The first two columns contains the exam scores and the third column
% contains the label. data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3); %% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with. fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']); plotData(X, y); % Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score') % Specified in plot order
legend('Admitted', 'Not admitted')
hold off;

然后,我们来学习训练集,直接使用我们逻辑回归算法原理分析中梯度下降算法的结果:

function [theta, J_history] = gredientDescent(X,y,alpha,iteration);

  [m,n]=size(X);
theta = zeros(n,1);
for(i= 1:iteration)
[J,grad] = costFunction(theta,X,y);
J_history(i) = J;
theta = theta-X'*(sigmoid(X*theta)-y)*alpha/m;
endfor endfunction function [J, grad] = costFunction(theta, X, y)
m = length(y);
J = 0;
grad = zeros(size(theta)); tmp=ones(m,1);
h = sigmoid(X*theta);
h1=log(h);
h2=log(tmp-h); y2=tmp-y; J=(y'*h1+y2'*h2)/(-m); grad=(X'*(h-y))/m;
end

计算后得出的theta值为:

绘出的decision boundary几近完美,但唯一的问题是,貌似梯度下降算法的收敛速度相当之慢,我选择了参数alpha=0.5,iteration=500000,才收敛到此程度。

而对于内建函数fminunc,迭代4000次已可以达到相近的水平。

Logistic Algorithm分类算法的Octave仿真的更多相关文章

  1. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  2. 第七篇:Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  3. 异常检测算法的Octave仿真

    在基于高斯分布的异常检测算法一文中,详细给出了异常检测算法的原理及其公式,本文为该算法的Octave仿真.实例为,根据训练样例(一组网络服务器)的吞吐量(Throughput)和延迟时间(Latenc ...

  4. 神经网络、logistic回归等分类算法简单实现

    最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...

  5. 分类算法之逻辑回归(Logistic Regression

    分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...

  6. [分类算法] :SVM支持向量机

    Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. S ...

  7. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  8. Netflix工程总监眼中的分类算法:深度学习优先级最低

    Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树 ...

  9. 数据挖掘之分类算法---knn算法(有matlab例子)

    knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒 ...

随机推荐

  1. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  2. Python中map和reduce函数??

    ①从参数方面来讲: map()函数: map()包含两个参数,第一个是参数是一个函数,第二个是序列(列表或元组).其中,函数(即map的第一个参数位置的函数)可以接收一个或多个参数. reduce() ...

  3. Django重点之url别名

    django重点之url别名[参数名必须是name,格式是name="XXX] 不论后台路径如何进行修改路径,前台访问的路径不变,永远是alias, 这样方便开发 前台根据 {{ url & ...

  4. RMAN备份与恢复 —— 完全恢复与不完全恢复

    名词解释: 顾名思义,完全恢复就是指数据没有丢失的恢复了.不完全恢复是指恢复后有部分数据丢失.它们是数据库的两种恢复方式.        完全恢复:利用重做日志或增量备份将数据块恢复到最接近当前时间的 ...

  5. 类的基本概念及self是什么东西?

    class 类 对一类拥有相同属性的对象的抽象.蓝图.原型,在类中定义了这些对象都具备的属性.共同方法 object对象 一个对象就是一个类的实例化模型,一个类必须经过实例化后才能在程序中调用,一个类 ...

  6. Python2/3 安装各类包的教程

    1.pycryptodome(pyCrypto) pyCrypto包已经失效了,需要替换为pycryptodome 有SSR直接 pip install pycryptodome 国内用 pip in ...

  7. 数据写入到Excel,模板样式复杂

    先整理好Excel模板,如: 接下来在程序获取上面整理好的Excel模板并替换关键字就可以了public ActionResult SummaryStatistics() public ActionR ...

  8. 通过css样式给表格tbody加垂直滚动条

    tbody加滚动条实现思路: 1,把tbody设置成display:block,然后就对其高度设置一个固定值,overflow设置成auto. 2,把thead的tr设置成display:block. ...

  9. Express 2015 RC for Windows 10 安装

    支持的操作系统 Windows 10 Technical Preview 硬件要求 1.6 GHz 或更快的处理器 1 GB RAM(如果在虚拟机上运行,则为 1.5 GB) 4 GB 可用硬盘空间 ...

  10. [python 学习] 使用 xml.etree.ElementTree 模块处理 XML

    ---恢复内容开始--- 导入数据(读文件和读字符串) 本地文件 country_data.xml <?xml version="1.0"?> <data> ...