[SDOI2008]递归数列

题目描述

一个由自然数组成的数列按下式定义:

对于i <= k:ai = bi

对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k

其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

输入输出格式

输入格式:

输入文件spp.in由四行组成。

第一行是一个自然数k。

第二行包含k个自然数b1, b2,...,bk。

第三行包含k个自然数c1, c2,...,ck。

第四行包含三个自然数m, n, p。


输出格式:

输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。

输入输出样例

输入样例#1:

2
1 1
1 1
2 10 1000003
输出样例#1:

142

说明

对于100%的测试数据:

1<= k <=15

1 <= m <= n <= 1018

对于20%的测试数据:

1<= k <=15

1 <= m <= n <= 106

对于30%的测试数据:

k=1 1 <= m <= n <= 1018

对于所有测试数据:

0<= b1, b2,... bk, c1, c2,..., ck<=109

1 <= p <= 108

挺水的一道题,推出了矩阵,然后前缀和搞搞也就简单了;

矩阵如下:

S[n]
b[n]
b[n-1]
...
b[n-k+1]

=

1 c[1] ... c[k-1] c[k]
0 c[1] ... c[k-1] c[k]
0 1 ... 0 0
0 0 ... 0 0
0 0 ... 1 0

*

S[n-1]
b[n-1]
b[n-2]
...
b[n-k+1]
#include<bits/stdc++.h>
#define ll long long
#define maxn 20
using namespace std; ll k,b[maxn],c[maxn],n,m,p,tot; struct mat{
ll x,y;
ll s[maxn][maxn];
}; mat operator *(mat a,mat b)
{
mat c;
c.x = a.x;
c.y = b.y;
memset(c.s,,sizeof(c.s));
for(ll i=;i<=a.x;i++)
for(ll j=;j<=b.y;j++)
for(ll k=;k<=b.x;k++)
c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j] % p) % p;
return c;
} mat ksm(mat a,ll ci)
{
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = a.x;
for(ll i=;i<=ans.x;i++)
ans.s[i][i] = ;
while(ci)
{
if(ci & ) ans = ans * a;
a = a * a;
ci >>= ;
}
return ans;
} ll find(ll num)
{
if(num <= k)
{
ll ans = ;
for(ll i=;i<=num;i++) ans += b[i],ans %= p;
return ans % p;
}
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = k + ;
for(ll i=;i<=k+;i++)
ans.s[][i] = ans.s[][i] = c[i - ];
ans.s[][] = ;
for(ll i=;i<=k;i++)
ans.s[i + ][i] = ;
ans = ksm(ans , num - k);
mat right;
memset(right.s,,sizeof(right.s));
right.x = k + ;
right.y = ;
for(ll i=;i<=k+;i++)
right.s[i][] = b[k + - i];
right.s[][] = tot;
right = ans * right;
return right.s[][];
} int main(){
cin >> k;
for(ll i=;i<=k;i++) scanf("%d",&b[i]),tot += b[i];
for(ll i=;i<=k;i++) scanf("%d",&c[i]);
cin >> m >> n >> p;
cout << (find(n) - find(m - ) + p) % p;
}

开始玩矩阵了!先来一道入门题![SDOI2008]递归数列的更多相关文章

  1. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  2. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  3. 可恶!学了这么久的LCA,联考的题目却是LCA+树形DP!!!可恶|!!!这几天想学学树形DP吧!先来一道入门题HDU 1520 Anniversary party

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  4. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  5. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  6. [luoguP2461] [SDOI2008]递归数列(DP + 矩阵优化)

    传送门 本题主要是构造矩阵,我们只需要把那一段式子看成两个前缀和相减, 然后就直接矩阵连乘. 直接对那个k+1阶矩阵快速幂即可,注意初始化矩阵为单位矩阵,即主对角线(左上到右下)都为1其他都为0. 另 ...

  7. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

随机推荐

  1. MySQL知识集合

    1.Mysql体系架构     2.MySQL文件结构 (1)参数文件:启动MySQL实例的时候,指定一些初始化参数,比如缓冲池大小.数据库文件路径.用户名密码等         -my.cnf读取优 ...

  2. unittest单元测试1

    一个简单的单元测试例子#coding:utf-8from selenium import webdriverimport unittestclass Baidu(unittest.TestCase): ...

  3. C#得到10000以内素数

    偶数除了二都不是素数 一个数 n 如果是合数,那么它的所有的因子不超过sqrt(n)--n的开方 int i, j, n = 10000; for (i = 3; i <= n; i += 2) ...

  4. 安装Linux系统CentOS6.5

    个人机器搭建分布式环境时避免要使用虚拟机来满足分布式环境所需的机器,当然伪分布式除外. 简单记录下虚拟机环境的创建过程,Mac上常用的虚拟机VMware Fusion. 虚拟机资源库中新建虚拟机: 选 ...

  5. java基础笔记)(5)

    xml文件:树形存储格式:通过相同的xml文件实现不同的软件.不同的操作系统.不同的平台之间的信息通讯: 声明xml文件: <?xml version="1.0" encod ...

  6. uboot常用命令

    一. 常用简单命令 1.1. help命令 a. 帮助查看其他命令的使用方法,类型linux下man b. 示例: help help x210 # help help help [command . ...

  7. [CQOI2012]模拟工厂 题解(搜索+贪心)

    [CQOI2012]模拟工厂 题解(搜索+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327574 链接题目地址:洛谷P3161 BZOJ P26 ...

  8. Node.js+webSocket

    // 引入WebSocket模块 var ws = require('nodejs-websocket') var PORT = 3030 var server = ws.createServer(f ...

  9. 什么是lambda函数?有什么好处?

    lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的匿名函数 好处:1.lambda 函数比较轻便,即用即删除,很适合需要完成一项功能,但是此功能只在此一处使用,连名字都 ...

  10. 深入了解RabbitMQ工作原理及简单使用

    深入了解RabbitMQ工作原理及简单使用 RabbitMQ系列文章 RabbitMQ在Ubuntu上的环境搭建 深入了解RabbitMQ工作原理及简单使用 RabbitMQ交换器Exchange介绍 ...