题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4810

题解

看数据范围和题目名字应该是根号算法。

因为询问除了区间外,还有第 \(3\) 个参数,所以不太可能是分块。

所以考虑莫队离线维护。

根据经验,差为某值的数对的存在性可以用 bitset 移位判断。用 bitset 维护当前区间内每一个数是否出现,那么减法就可以转化为 \(s \& (s << x))\) 是否为空判断。

加法的话可以把 bitset 翻转以后类似减法判断。

乘法的话,因为乘积 \(\leq c\),所以可以 \(\sqrt c\) 枚举每一个因数判断。


总的时间复杂度为 \(O(m(\sqrt n + \frac c{64}))\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 100000 + 7;
const int M = 100000; #define bl(x) (((x) - 1) / blo + 1) int n, m, blo;
int a[N], ans[N], cnt[N];
std::bitset<N> s, t; struct Query {
int opt, l, r, x, *ans;
inline bool operator < (const Query &b) const { return bl(l) != bl(b.l) ? l < b.l : r < b.r; }
} q[N]; inline void madd(int x) {
++cnt[a[x]];
if (cnt[a[x]] == 1) s.set(a[x]), t.set(M - a[x]);
}
inline void mdel(int x) {
--cnt[a[x]];
if (!cnt[a[x]]) s.reset(a[x]), t.reset(M - a[x]);
} inline void work() {
std::sort(q + 1, q + m + 1);
int l = 1, r = 0;
for (int i = 1; i <= m; ++i) {
while (l > q[i].l) madd(--l);
while (r < q[i].r) madd(++r);
while (l < q[i].l) mdel(l++);
while (r > q[i].r) mdel(r--);
if (q[i].opt == 1) *q[i].ans = (s & (s << q[i].x)).any();
else if (q[i].opt == 2) *q[i].ans = (t & (s << (M - q[i].x))).any();
else {
int x = q[i].x;
for (int j = 1, p = sqrt(x); j <= p; ++j)
if (x % j == 0 && s[j] && s[x / j]) { *q[i].ans = 1; break; }
}
}
for (int i = 1; i <= m; ++i) if (ans[i]) puts("yuno"); else puts("yumi");
} inline void init() {
read(n), read(m), blo = sqrt(n);
for (int i = 1; i <= n; ++i) read(a[i]);
for (int i = 1; i <= m; ++i) read(q[i].opt), read(q[i].l), read(q[i].r), read(q[i].x), q[i].ans = ans + i;
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4810 [Ynoi2017]由乃的玉米田 莫队+bitset(+数论)的更多相关文章

  1. BZOJ4810:[YNOI2017]由乃的玉米田(莫队,bitset)

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  2. 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset

    题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...

  3. bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队

    [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 917  Solved: 447[Submit][Status][Di ...

  4. LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田

    题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...

  5. BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)

    多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...

  6. bzoj4810 [Ynoi2017]由乃的玉米田

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  7. 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队

    [BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...

  8. [BZOJ]4810: [Ynoi2017]由乃的玉米田

    Time Limit: 30 Sec  Memory Limit: 256 MB Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差 ...

  9. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

随机推荐

  1. ubuntu 18.04 gcc g++降级4.8版

    $ sudo apt-get install -y gcc-4.8 $ sudo apt-get install -y g++-4.8 $ cd /usr/bin $ sudo rm gcc $ su ...

  2. sed扩展命令使用

    [root@b ~]# cat f.txt inet addr:192.168.0.110 Bcast:192.168.0.255 Mask:255.255.255.0[root@b ~]# cat ...

  3. sklearn系列之 sklearn.svm.SVC详解

    首先我们应该对SVM的参数有一个详细的认知: sklearn.svm.SVC 参数说明: 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问 ...

  4. redis--迁库操作

    如果碰到redis库要迁移(之前的redis用作他用)或者备份用,就需要操作redis迁移 import redis def qianyi(k=None,v=None,name=None): r1 = ...

  5. 阿里云 centos 部署 Django 可能遇到的问题

    问题一:版本限制   File "/Users/icourt/Desktop/hf/venv/lib/python3.7/site-packages/django/db/backends/m ...

  6. anr以及nlp语音自动化测试方案

    进行asr自动化测试 1.将人工语音录制的音频文件分为一句话一个文件,并将文件名命名为此句话,可以加后缀,例如:附近的公园_1 2.使用电脑连接蓝牙音箱,控制好距离角度等环境 3.使用python或者 ...

  7. Binary Tree Level Order Traversal(二叉树广度优先遍历或逐层遍历)

    来源:https://leetcode.com/problems/binary-tree-level-order-traversal Given a binary tree, return the l ...

  8. 工具使用--Tomcat

    一.Tomcat 服务搭建 1.进入apache官网下载tomcat 8.在左手边的菜单区,选择download下的tomcat8 版本: PS:操作系统,文件类型 2.将zip文件下载,解压到本地: ...

  9. 基类子类在Qt信号量机制下的思考

    背景知识: 基类 superClass class superClass { public: superClass() { std::string m = "superClass() &qu ...

  10. IDEA闪退问题

    这段时间经常遇到IDEA闪退的问题,在网上搜了一大堆的博客,无外乎是说让修改下面两个文件,但是改来改去没什么卵用,最后重装IDEA,一样的,没什么用.持续时间有几个月了,内心也有点崩溃,昨天下午彻底心 ...