题目传送门(内部题22)


输入格式

第一行有$2$个整数$n,k$。
第二行有$n$个正整数$a_i$。


输出格式

第一行有一个整数$s$,表示可以生成的非负整数的个数。
第二行有$s$个可以生成的非负整数。


样例

样例输入:

2 8
4 12

样例输出:

2
0 4


数据范围与提示

样例解释:

有无穷种方案可以得到$x=0$,例如:
$b_1=0$、$b_2=0$,$b_1=2$、$b_2=0$,$b_1=1$、$b_2=1$等等。
有无穷种方案可以得到$x=4$,例如:
$b_1=1$、$b_2=0$,$b_1=1$、$b_2=2$,$b_1=3$、$b_2=4$等等。
更多输入输出样例请见选手下发文件夹。

数据范围:

对于所有数据,$1\leqslant n\leqslant 5\times {10}^5,1\leqslant k\leqslant {10}^6,1\leqslant a_i\leqslant {10}^9$。


题解

利用裴蜀定理(找规律)可以发现所有能生成的数都是$k$和所有$a_i$的$gcd$且比$k$小,于是我们就$A$掉这道题了。

时间复杂度:$\Theta(n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int k,x,g,i;
main()
{
cin>>x>>k;
g=k;
while(cin>>x)g=__gcd(g,x);
cout<<k/g<<endl;
while(i<k)cout<<i<<' ',i+=g;
}

rp++

[CSP-S模拟测试]:math(裴蜀定理)的更多相关文章

  1. HDU 6444 Neko's loop ( 2018 CCPC 网络赛 && 裴蜀定理 && 线段树 )

    题目链接 题意 : 给出一个 n 个元素的环.可以任意选择起点.选完起点后.可以行走 m 步.每次前进 k 个单位.所走到的点将产生正或负贡献.问你一开始得准备多少才能使得初始资金加上在环上获取最大利 ...

  2. [洛谷P4549] [模板] 裴蜀定理

    18.10.03模拟赛T1. 出题人xcj(Mr.Handsome)十分良心,给了一道送分题...... 互测题好久没有出现送分题了.xcj真棒. 题目传送门 幸亏之前看过,否则真的是送分题都拿不到. ...

  3. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  4. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  5. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  6. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  7. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  8. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  9. 【Wannafly挑战赛22A计数器】【裴蜀定理】

    https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...

随机推荐

  1. 使用Xmanager远程CentOS 7服务器(XDMCP)

    0. 前言 基本概念 简略概述 Display Manager 提供登录需求 在文字界面下可以通过startx来启动Xwindows 在runlevel 5下,在tty7处有可以使用的图形登录界面(方 ...

  2. Vue Cli 3:创建项目

    一 简介 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,有几个独立的部分. 1 CLI (@vue/cli) 是一个全局安装的 npm 包,提供了终端里的 vue 命令.(vue ...

  3. EasyUI的columns中列标题居中

    $("#supDataList").datagrid({   url: "../Ajax/SupplierAjax.ashx",   queryParams:  ...

  4. oracle--用户区别sys和system

    1.数据库的启动需要以SYSDBA/SYSOPER身份登录. 2.如果在同一主机上使用IPC连接到数据库使用操作系统授权,登录任何一个用户都可以拥有as sysdba和as sysoper. 3.sy ...

  5. Python入门习题8.羊车门问题

    例8. 羊车门问题描述:有3扇关闭的门,一扇后停着汽车,另外两扇门后是山羊,主持人知道每扇门后是什么.参赛者首先选择一扇门.在开启它之前,主持人会从另外两扇门中打开一扇门,露出门后的山羊.此时,允许参 ...

  6. CodeForces 295B Greg and Graph (floyd+离线)

    <题目链接> 题目大意:给定$n$个点的有向完全带权图$(n\leq500)$,现在进行$n$次操作,每次操作从图中删除一个点(每删除一个点,都会将与它相关联的边都删除),问你每次删点之前 ...

  7. docker ssh连接不上

    docker ssh连接报下面的错 Last login: Thu Apr 13 09:17:23 2017 from localhost Connection to 127.0.0.1 closed ...

  8. http响应代码解释

    200:成功响应 302:找到,但是请求的资源在另外一个不同的url中. 400:错误请求.这个请求不能被服务器所理解,客户端必须修改请求. 401:未认证,这个请求需要用户认证. 404:未找到.服 ...

  9. XC6SLX45T-2FGG484C 原厂订购 原装正品

    作为一家科研公司,保证的原厂品质和正规采购渠道是科学严谨的研发工作中重要的一环,更是保证研发产品可靠.稳定的基础.而研发中所遇到的各种不可预测的情况更是每个工程师向技术的山峰攀登中时会遇到的各种难题. ...

  10. Linux就该这么学06学习笔记

    参考链接:https://www.linuxprobe.com/chapter-06.html 1.一切从“/”开始 Linux系统中的一切文件都是从“根(/)”目录开始的,并按照文件系统层次化标准( ...