hdu-2389.rain on your parade(二分匹配HK算法)
Rain on your Parade
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 6752 Accepted Submission(s): 2117
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
2
Scenario #2:
2
/*************************************************************************
> File Name: hdu-2389.rain_on_your_parade.cpp
> Author: CruelKing
> Mail: 2016586625@qq.com
> Created Time: 2019年09月02日 星期一 21时29分16秒
本题思路:比较裸的二分匹配,但是一看n比较大,所以需要更牛皮的算法,也即HK算法其复杂度为sqrt(n) * m.
************************************************************************/ #include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <queue>
#include <map>
using namespace std; typedef long long ll;
const int maxn = + , inf = 0x3f3f3f3f;
int speed[maxn];
bool used[maxn];
int n, m, t;
typedef pair<int, int> pii;
pii umbrellas[maxn], guests[maxn];
int mx[maxn], my[maxn];
int dx[maxn], dy[maxn];
vector <int> G[maxn];
int dis; bool searchp() {
queue<int> que;
dis = inf;
memset(dx, -, sizeof dx);
memset(dy, -, sizeof dy);
for(int i = ; i <= m; i ++) {
if(mx[i] == -) {
que.push(i);
dx[i] = ;
}
}
while(!que.empty()) {
int u = que.front();
que.pop();
if(dx[u] > dis) break;
int sz = G[u].size();
for(int i = ; i < sz; i ++) {
int v = G[u][i];
if(dy[v] == -) {
dy[v] = dx[u] + ;
if(my[v] == -) dis = dy[v];
else {
dx[my[v]] = dy[v] + ;
que.push(my[v]);
}
}
}
}
return dis != inf;
} bool dfs(int u) {
int sz = G[u].size();
for(int i = ; i < sz;i ++) {
int v = G[u][i];
if(!used[v] && dy[v] == dx[u] + ) {
used[v] = true;
if(my[v] != - && dy[v] == dis) continue;
if(my[v] == - || dfs(my[v])) {
my[v] = u;
mx[u] = v;
return true;
}
}
}
return false;
} int maxmatch() {
int res = ;
memset(mx, -, sizeof mx);
memset(my, -, sizeof my);
while(searchp()) {
memset(used, false, sizeof used);
for(int i = ; i <= m;i ++) {
if(mx[i] == - && dfs(i)) res ++;
}
}
return res;
} bool has_distance(int i, int j) {
ll temp = (umbrellas[i].first - guests[j].first) * (umbrellas[i].first - guests[j].first) + (umbrellas[i].second - guests[j].second) * (umbrellas[i].second - guests[j].second);
return temp <= (ll)speed[j] * speed[j] * t * t;
} int main() {
int T, Case = ;
scanf("%d", &T);
while(T --) {
scanf("%d", &t);
scanf("%d", &m);
for(int i = ; i <= m; i ++) {
scanf("%d %d %d", &guests[i].first, &guests[i].second, &speed[i]);
}
scanf("%d", &n);
for(int i = ; i <= n; i ++) {
scanf("%d %d", &umbrellas[i].first, &umbrellas[i].second);
for(int j = ; j <= m; j ++) {
if(has_distance(i, j)) G[j].push_back(i);
}
}
int res = maxmatch();
for(int i = ; i <= m; i ++) G[i].clear();
printf("Scenario #%d:\n", ++Case);
printf("%d\n\n", res);
}
return ;
}
hdu-2389.rain on your parade(二分匹配HK算法)的更多相关文章
- hdu2389 Rain on your Parade 二分图匹配--HK算法
You’re giving a party in the garden of your villa by the sea. The party is a huge success, and every ...
- HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)
HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...
- Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)
题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...
- HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
- HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】
Rain on your Parade Time Limit:3000MS Memory Limit:165535KB 64bit IO Format:%I64d & %I64 ...
- HDU 2389 Rain on your Parade 最大匹配(模板题)【HK算法】
<题目链接> 题目大意:有m个宾客,n把雨伞,预计时间t后将会下大雨,告诉你每个宾客的位置和速度,每把雨伞的位置,问你最多几个宾客能够拿到伞. 解题分析: 本题就是要我们求人与伞之间的最大 ...
- hdu 2444 The Accomodation of Students(二分匹配 匈牙利算法 邻接表实现)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法
题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) ...
- HDU 2389 Rain on your Parade
大意:在一个二维坐标系上有nx个人和ny把伞,每个人都有自己的移动速度,问有多少人可以再 time 时间内移动到不同的雨伞处(不允许两个人共用一把伞). 输入数据: 第一行是一个T代表T组测试数据 ...
随机推荐
- springboot+HttpInvoke 实现RPC调用
开始用springboot2+hession4实现RPC服务时,发现第一个服务可以调用成功,但第二个就一直报 '<' is an unknown code.第一个服务还是可以调用的.参考网上的方 ...
- 原始http下载图片生成文件
package com.example.demo.util; import java.io.*;import java.net.URL;import java.net.URLConnection;im ...
- php内置函数分析array_diff()
PHP_FUNCTION(array_diff) { zval *args; int argc, i; uint32_t num; HashTable exclude; zval *value; ze ...
- postman(三):详解postman动态变量使用
参考: Variables Dynamic variables
- axios 各种请求方式传递参数
get delete 方法较为不同 注意:每个方法的传参格式不同,具体用法看下方 get请求方式将需要入参的数据作为 params 属性的值,最后整体作为参数传递 delete请求方式将将需要入参的数 ...
- SQL插入字段
//SQL插入字段 String dropTable="drop table if exists test;"; String columnGid ="alter tab ...
- postman—Sandbox和断言
Postman沙盒 Postman Sandbox是一个JavaScript执行环境,您可以在编写预请求脚本和测试脚本(在Postman和Newman中)时可用.在这个沙箱中执行您在预请求/测试脚本部 ...
- 有关于TreeSet的自我理解
TreeSet是依靠TreeMap来实现的. TreeSet是一个有序集合,TreeSet中的元素将按照升序排列,缺省是按照自然排序进行排列,意味着TreeSet中的元素要实现Comparable接口 ...
- opencv_python_基本图像处理
https://www.e-learn.cn/content/python/2694135 https://blog.csdn.net/Eastmount/article/details/817488 ...
- Sign on Fence(连续的长为W的一段中最小的数字的最大值)
题目链接:http://codeforces.com/problemset/problem/484/E 题意:给你个n,n个木板都有高度,宽度都为1 ,给你两个数[l,r]和一个w,求在[l,r]区间 ...