深入解析CNN pooling 池化层原理及其作用
原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062
我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究。其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论。
CS231n又对池化进行了量化的阐述:
池化核这个filter是不需要保留参数的,不同于conv filter, 每一个pooling filter就是一个固定的函数,比如max pooling,就是取这个filter覆盖区域像素的最大值而已。所以我们在计算卷积层数的时候,不计入池化层。
对于pooling 层,我们通常不需要使用 padding。这是由于采用pooling通常是为了减少一半的图片尺寸,我们使用 kernel size = 2 * 2,以及stride = 2的池化核。就可以在不padding 的情况下,将尺寸变为一半。
Neural Networks
看到这里,你可能会有两个疑问:
为什么要降低图片的空间尺寸呢?
先来探讨第一个问题。
我们知道在卷积神经网络中,如果特征抽取后最终输出特征图尺寸太大,将会导致输出结果的特征太多,计算量剧增的同时,将其输入到一个分类器(通常是全连接层Full Connected layer),很容易就会导致过拟合。就像机器学习一样,特征过多的话,我们可能会考虑降维(如PCA)来减少特征,增强拟合能力。
简单来说:降低尺寸,有助于减少计算量以及特征数量,保留主要特征,增大卷积核感受野,防止过拟合。
但我们在做卷积的时候,让conv 层的步长stride = 2同样也可以起到降低尺寸的目的啊,为什么需要pooling 层来降低尺寸,这就回到了上文的:池化层不需要保留参数。它采用一个固定的函数进行像素运算,如max pooling filter中采用了max函数,是不需要保留参数的,所以减少了网络的参数量。
增大感受野是怎么回事,我们知道在实际训练中,我们的卷积核一般就是比较小的,如3 * 3,这些卷积核本质就是在特征图上进行滤波窗口计算并滑动。如果要保持卷积核大小不变,同时增大卷积核覆盖区域(感受野增大,便于提取高层语义),那么就可以对图片尺寸进行下采样。
当然增大感受野也有其他方式,如膨胀卷积运算,在保证特征图尺寸不变的情况下,可以增大卷积核的感受野。
如果你追求更加理论和硬核的pooling解释的话,我推荐你去看一下LeCun在10年ICML的论文:A Theoretical Analysis of Feature Pooling in Visual Recognition。
————————————————
版权声明:本文为CSDN博主「qyhyzard」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062
深入解析CNN pooling 池化层原理及其作用的更多相关文章
- CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.ma ...
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
- ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...
- 神经网络中的池化层(pooling)
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这 ...
- day-16 CNN卷积神经网络算法之Max pooling池化操作学习
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...
- CNN学习笔记:池化层
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...
- CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...
- tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...
- 图像处理池化层pooling和卷积核
1.池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层.池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量.使用池化层即可以加快计算速度也有防止过拟合的作用. 2.为什 ...
随机推荐
- mybatis-generator的功能扩展
项目代码地址:https://github.com/whaiming/java-generator 我在原有的基础上扩展了和修改了一些功能: 1.增加获取sqlServer数据库字段注释功能 2.Ma ...
- xml_dom解析
DOM解析(一) 采用dom解析,会将xml文档全部载入到内存当中,然后将xml文档中的所有内容转换为tree上的节点(对象). 优点: 可以随机解析 可以修改文件 可以创建xml文件 缺点: 适合解 ...
- django优化--ORM查询
ORM提供了两个方法用来优化查询效率 1. select_related 有两张表:表结构如下: class Scheme(models.Model): """ 套餐类 ...
- 为Redis设置登录密码并使用密码登录
https://www.cnblogs.com/756623607-zhang/p/6859540.html 密码登录Redis redis-cli -h 127.0.0.1 -p 6379 -a & ...
- 格式化json扩展
json-handle 直接在chrome应用商店搜索JSON-handle或者去github搜索可用插件即可
- C++中的变量属性小结
其实在C++中,一个变量除了数据类型以外,还有3种属性: (1)存储类别:C++中允许使用auto,static,register,extern 4种存储类别. (2)作用域:指在程序中可以使用该变量 ...
- php和redis实现消息队列
php+redis消息队列是php+mysql性能不足时的一个中间间处理方案.通过这个中间的处理,保证的数据的可用性和准确性.用于服务器瞬间请求大,数据库压力大的情况.如并发量大导致的超卖.并发量大导 ...
- usb四种传输模式bulk
当USB插入USB总线时,USB控制器会自动为该USB设备分配一个数字来标示这个设备.另外,在设备的每个端点都有一个数字来表明这个端点.USB设备驱动向USB控制器驱动请求的每次传输被称为一个事务(T ...
- 免费自动化测试工具Katalon Studio入门
Katalon Studio 一.简介: Katalon Studio 是一个在网页应用.移动和网页服务方面功能强大的自动化测试解决方案.基于 Selenium 和 Appium 框架,Katalon ...
- HDU - 6582 Path (最短路+最小割)
题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...