DP杂谈【持续更新中】
什么是DP?
推荐看一下。
正文
滚动数组优化
在一些空间贼小,时间还好的 DP 题目里,会用到优化空间的小技♂巧——滚动数组优化。
滚动数组,顾名思义,一个会滚动的数组,主要是怎样个滚法呢?接下来我先举一个例子:
e.g
最长公共子序列(LCS)
给出两个整数序列,求这两个序列的†最长公共子序列。
†最长公共子序列:多个序列的共有的最长子序列。
这道题我们不难发现:
我们设 \(f_{i,j}\) 为从 \(1\) 到 \(i\) 的 \(a\) 子序列和从 \(1\) 到 \(j\) 的 \(b\) 子序列的 \(LCS\)。
它的状态转移方程即为
\begin{cases}
f_{i-1, j-1} + 1 & a[i]=b[j] \\
max(f_{i-1,j},f_{i,j-1}) & a[i]\ne b[j]
\end{cases}
\]
我们发现,状态 \(f_{i,j}\) 只依赖于 \(f_{i-1,\dots}\) 和 \(f_{i,\dots}\),那么既然 \(i-2\) 及以后的状态都没用了,那么我们可以把那之前的状态给滚掉,即把第一维套上个 \(\% 2\),思考一下,这里十分的巧妙。
因为 \(mod\) 常数很大,我们为了优化常数,可以使用位运算,即 \(i\% 2\rightarrow i\&1\),\((i-1)\% 2\rightarrow (i\oplus1)\&1\)
这样我们将巨大的 \(O(n^2)\) 的空间压缩到了 \(O(n)\)。
费用提前计算
在一些题目里,它状态的每一次转移都会产生后效性,所以用普通的DP是做不了的,那么,我们如何解决这个问题呢?
这时,我们有一种策略,就是既然我已经知道未来会被现在影响,那么为什么我不先把将要影响的算了呢?这,就是费用提前计算。
e.g
Luogu 2365 任务安排
题目描述
\(n\) 个任务排成一个序列在一台机器上等待完成(顺序不得改变),这 \(n\) 个任务被分成若干批,每批包含相邻的若干任务。
从零时刻开始,这些任务被分批加工,第 \(i\) 个任务单独完成所需的时间为 \(t_i\)。在每批任务开始前,机器需要启动时间 \(s\),而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。
每个任务的费用是它的完成时刻乘以一个费用系数 \(f_i\)。请确定一个分组方案,使得总费用最小。
对于 \(100\%\) 的数据,\(1\le n \le 5000\),\(0 \le s \le 50\),\(1\le t_i,f_i \le 100\)。
我们先设 \(dp_i\) 为前 \(i\) 天的答案,\(time_i\) 为前 \(i\) 天完成后的时间,经过手玩样例过后发现状态转移方程为:
\]
对于 \(time_j\),我们可以表示为:
\]
※ \(num\) 为前 \(i\) 天做的次数。
怎么处理 \(num\) 呢?考虑到在每次做任务时,都会使当前和以后计算的时间加上 \(s\),先不管转移方程,我们现在对未来的影响为:
\]
于是我们可以列出一个船新的状态转移方程:
\]
因为我们在过去已经计算了影响现在的值,所以我们只需要计算 \(\sum^i_{k=1}t_k\)。以上的各种 \(\sum\) 均可以用前缀和优化为 \(O(1)\) 的,所以时间复杂度为 \(O(n^2)\)。
数位DP
数位DP主要解决的是有关每个数位上的数字的一些关系,这种DP比较容易辨认,大多是一眼题,形如:
求 \(l\) 到 \(r(1\le l,r\le 10^{18})\) 中满足以下性质的数的个数:
每个数位.........
我们可以使用类似前缀和的思想,设 \(dp(i)\) 为 \(1\) 到 \(i\) 一共满足性质的数的个数,答案即为 \(dp(r) - dp(l-1)\)。
发现可以对于一个已经固定最高位了的任意满足条件的 \(k\) 位数的数量进行预处理,但是这个做法会假掉,原因:先设原数等于 \(\overline{kabcd\cdots e}\)(\(x\) 位数),则我们在处理满足性质的最高位为 \(k\) 的 \(x\) 位数的个数可能会包含超出原数范围的数,但是这部分的数是不可取的,并且难以维护 \(\overline{kabcd\cdots e}\) 以内的满足性质的最高位为 \(k\) 的 \(x\) 位数的个数,所以做法假了。
注意到最高位小于 \(k\) 时,我们是可以使用上文预处理的方法的,于是我们可以分类讨论:

对于左边的分支,我们可以直接用先前预处理出来的值来更新 \(ans\),对于右边的分支,继续往下走,记录一下前面数位的情况,再针对前面的数位来进行下一位的转移。
e.g.
DP杂谈【持续更新中】的更多相关文章
- git常用命令(持续更新中)
git常用命令(持续更新中) 本地仓库操作git int 初始化本地仓库git add . ...
- Atom使用记录(持续更新中)
部分内容取自:http://www.jianshu.com/p/dd97cbb3c22d,我自己也在使用,持续更新中 Atom安装插件在窗口中File---Setting---install 在里面进 ...
- Pig基础学习【持续更新中】
*本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.* Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的,可以作为MapR ...
- Pig语言基础-【持续更新中】
***本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.*** Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的, ...
- java视频教程 Java自学视频整理(持续更新中...)
视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...
- 系列文章:老项目的#iPhone6与iPhone6Plus适配#(持续更新中,更新日期2014年10月12日 星期日 )
本文永久地址为http://www.cnblogs.com/ChenYilong/p/4020399.html ,转载请注明出处. ********************************** ...
- 知道创宇爬虫题--代码持续更新中 - littlethunder的专栏 - 博客频道 - CSDN.NET
知道创宇爬虫题--代码持续更新中 - littlethunder的专栏 - 博客频道 - CSDN.NET undefined 公司介绍 - 数人科技 undefined
- Python开发【第二十三篇】:持续更新中...
Python开发[第二十三篇]:持续更新中...
- 《WCF技术剖析》博文系列汇总[持续更新中]
原文:<WCF技术剖析>博文系列汇总[持续更新中] 近半年以来,一直忙于我的第一本WCF专著<WCF技术剖析(卷1)>的写作,一直无暇管理自己的Blog.在<WCF技术剖 ...
- HBase常见问题答疑解惑【持续更新中】
HBase常见问题答疑解惑[持续更新中] 本文对HBase开发及使用过程中遇到过的常见问题进行梳理总结,希望能解答新加入的HBaser们的一些疑惑. 1. HTable线程安全吗? HTable不是线 ...
随机推荐
- 一文快速回顾 Java 操作数据库的方式-JDBC
前言 数据库的重要性不言而喻,不管是什么系统,什么应用软件,也不管它们是 Windows 上的应用程序,还是 Web 应用程序,存储(持久化)和查询(检索)数据都是核心的功能. 大家学习数据库时,比如 ...
- Java Swing的练习感悟
感悟心得 这还是我第一次使用Java Swing写代码呢,直接就是趣味性拉满! 在相关的界面代码的基础上,在必要的位置嵌入Java代码,就可以很好的实现啦! 简单的嘞! (有兴趣的各位可以选择去浅浅地 ...
- SpringBoot使用邮件发送
使用场景: 定时任务报错 消息推送 日志报错提醒 1.导入依赖 <dependency> <groupId>org.springframework.boot</group ...
- TCP 三次握手,给我长脸了噢
大家好,我是小富~ 个人资源分享网站:FIRE 本文收录在 Springboot-Notebook 面试锦集 前言 之前有个小伙伴在技术交流群里咨询过一个问题,我当时还给提供了点排查思路,是个典型的八 ...
- MySql生成ER【StarUML】文件
1. 背景 要画ER图,一个个打费时费力,StarUML文件打开是json.那么就有可能自动生成. 2. 效果 把表结构生成好,自己只要维护关系即可. 3. 代码 import lombok.Data ...
- 三天吃透Spring Cloud面试八股文
本文已经收录到Github仓库,该仓库包含计算机基础.Java基础.多线程.JVM.数据库.Redis.Spring.Mybatis.SpringMVC.SpringBoot.分布式.微服务.设计模式 ...
- Go语言:利用 TDD 驱动开发测试 学习结构体、方法和接口
环境安装: (新手向)在Linux中使用VScode编写 "Hello,world"程序,并编写测试-Ubuntu20.4 上一篇相关随笔: Go语言:利用 TDD 测试驱动开发帮 ...
- 万字血书Vue—Vuex
Vuex概述 组件之间共享数据的方式(小范围) 全局事件总线 Vuex是什么? 专门在Vue中实现集中式状态(数据)管理的一个Vue插件,可以方便的实现组件之间的数据共享. 使用Vuex统一管理状态的 ...
- [原创][luogu]P1217 回文质数 真·生成回文的方法
不多说,直接看代码,都在注释里 // 中心思想: // * 1. 代入数据只想回文的一半和位数的变化 // * 例. 1001 和 101 都存的是10, 但是位数一个是4, 一个是3 // * 2. ...
- How to implement UDP protocal
Server implementation Open a socket on the server that listens to the UDP requests. (I've chosen 888 ...