DP杂谈【持续更新中】
什么是DP?
推荐看一下。
正文
滚动数组优化
在一些空间贼小,时间还好的 DP 题目里,会用到优化空间的小技♂巧——滚动数组优化。
滚动数组,顾名思义,一个会滚动的数组,主要是怎样个滚法呢?接下来我先举一个例子:
e.g
最长公共子序列(LCS)
给出两个整数序列,求这两个序列的†最长公共子序列。
†最长公共子序列:多个序列的共有的最长子序列。
这道题我们不难发现:
我们设 \(f_{i,j}\) 为从 \(1\) 到 \(i\) 的 \(a\) 子序列和从 \(1\) 到 \(j\) 的 \(b\) 子序列的 \(LCS\)。
它的状态转移方程即为
\begin{cases}
f_{i-1, j-1} + 1 & a[i]=b[j] \\
max(f_{i-1,j},f_{i,j-1}) & a[i]\ne b[j]
\end{cases}
\]
我们发现,状态 \(f_{i,j}\) 只依赖于 \(f_{i-1,\dots}\) 和 \(f_{i,\dots}\),那么既然 \(i-2\) 及以后的状态都没用了,那么我们可以把那之前的状态给滚掉,即把第一维套上个 \(\% 2\),思考一下,这里十分的巧妙。
因为 \(mod\) 常数很大,我们为了优化常数,可以使用位运算,即 \(i\% 2\rightarrow i\&1\),\((i-1)\% 2\rightarrow (i\oplus1)\&1\)
这样我们将巨大的 \(O(n^2)\) 的空间压缩到了 \(O(n)\)。
费用提前计算
在一些题目里,它状态的每一次转移都会产生后效性,所以用普通的DP是做不了的,那么,我们如何解决这个问题呢?
这时,我们有一种策略,就是既然我已经知道未来会被现在影响,那么为什么我不先把将要影响的算了呢?这,就是费用提前计算。
e.g
Luogu 2365 任务安排
题目描述
\(n\) 个任务排成一个序列在一台机器上等待完成(顺序不得改变),这 \(n\) 个任务被分成若干批,每批包含相邻的若干任务。
从零时刻开始,这些任务被分批加工,第 \(i\) 个任务单独完成所需的时间为 \(t_i\)。在每批任务开始前,机器需要启动时间 \(s\),而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。
每个任务的费用是它的完成时刻乘以一个费用系数 \(f_i\)。请确定一个分组方案,使得总费用最小。
对于 \(100\%\) 的数据,\(1\le n \le 5000\),\(0 \le s \le 50\),\(1\le t_i,f_i \le 100\)。
我们先设 \(dp_i\) 为前 \(i\) 天的答案,\(time_i\) 为前 \(i\) 天完成后的时间,经过手玩样例过后发现状态转移方程为:
\]
对于 \(time_j\),我们可以表示为:
\]
※ \(num\) 为前 \(i\) 天做的次数。
怎么处理 \(num\) 呢?考虑到在每次做任务时,都会使当前和以后计算的时间加上 \(s\),先不管转移方程,我们现在对未来的影响为:
\]
于是我们可以列出一个船新的状态转移方程:
\]
因为我们在过去已经计算了影响现在的值,所以我们只需要计算 \(\sum^i_{k=1}t_k\)。以上的各种 \(\sum\) 均可以用前缀和优化为 \(O(1)\) 的,所以时间复杂度为 \(O(n^2)\)。
数位DP
数位DP主要解决的是有关每个数位上的数字的一些关系,这种DP比较容易辨认,大多是一眼题,形如:
求 \(l\) 到 \(r(1\le l,r\le 10^{18})\) 中满足以下性质的数的个数:
每个数位.........
我们可以使用类似前缀和的思想,设 \(dp(i)\) 为 \(1\) 到 \(i\) 一共满足性质的数的个数,答案即为 \(dp(r) - dp(l-1)\)。
发现可以对于一个已经固定最高位了的任意满足条件的 \(k\) 位数的数量进行预处理,但是这个做法会假掉,原因:先设原数等于 \(\overline{kabcd\cdots e}\)(\(x\) 位数),则我们在处理满足性质的最高位为 \(k\) 的 \(x\) 位数的个数可能会包含超出原数范围的数,但是这部分的数是不可取的,并且难以维护 \(\overline{kabcd\cdots e}\) 以内的满足性质的最高位为 \(k\) 的 \(x\) 位数的个数,所以做法假了。
注意到最高位小于 \(k\) 时,我们是可以使用上文预处理的方法的,于是我们可以分类讨论:

对于左边的分支,我们可以直接用先前预处理出来的值来更新 \(ans\),对于右边的分支,继续往下走,记录一下前面数位的情况,再针对前面的数位来进行下一位的转移。
e.g.
DP杂谈【持续更新中】的更多相关文章
- git常用命令(持续更新中)
git常用命令(持续更新中) 本地仓库操作git int 初始化本地仓库git add . ...
- Atom使用记录(持续更新中)
部分内容取自:http://www.jianshu.com/p/dd97cbb3c22d,我自己也在使用,持续更新中 Atom安装插件在窗口中File---Setting---install 在里面进 ...
- Pig基础学习【持续更新中】
*本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.* Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的,可以作为MapR ...
- Pig语言基础-【持续更新中】
***本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.*** Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的, ...
- java视频教程 Java自学视频整理(持续更新中...)
视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...
- 系列文章:老项目的#iPhone6与iPhone6Plus适配#(持续更新中,更新日期2014年10月12日 星期日 )
本文永久地址为http://www.cnblogs.com/ChenYilong/p/4020399.html ,转载请注明出处. ********************************** ...
- 知道创宇爬虫题--代码持续更新中 - littlethunder的专栏 - 博客频道 - CSDN.NET
知道创宇爬虫题--代码持续更新中 - littlethunder的专栏 - 博客频道 - CSDN.NET undefined 公司介绍 - 数人科技 undefined
- Python开发【第二十三篇】:持续更新中...
Python开发[第二十三篇]:持续更新中...
- 《WCF技术剖析》博文系列汇总[持续更新中]
原文:<WCF技术剖析>博文系列汇总[持续更新中] 近半年以来,一直忙于我的第一本WCF专著<WCF技术剖析(卷1)>的写作,一直无暇管理自己的Blog.在<WCF技术剖 ...
- HBase常见问题答疑解惑【持续更新中】
HBase常见问题答疑解惑[持续更新中] 本文对HBase开发及使用过程中遇到过的常见问题进行梳理总结,希望能解答新加入的HBaser们的一些疑惑. 1. HTable线程安全吗? HTable不是线 ...
随机推荐
- mysql统计特定字符串出现次数
其中'test'为原始字符串,'t'为特定字符串 SELECT floor((char_length('test') - char_length(replace('test', 't', '')) ...
- [极客大挑战 2019]Http 1
进入题目,可以看到是一个小型的网站 这里我也走了很多弯路,题目提示为HTTP,这里就可以在源码中找一些隐藏信息 搜搜.php可以看到有一个Secret.php 进入提示It doesn't come ...
- MySQL学习(六)timestamp & datetime 区别
参考博客: https://cloud.tencent.com/developer/article/1407693 timestamp只使用datetime一半的存储空间,并且会根据时区变化,具有特殊 ...
- 加密脚本分析—evil.py
加密脚本分析-evil.py 1.题目 源文件 一共两个文件 enc_flag.txt evil.py(原文件无注释) 1 # coding: utf-8 2 3 import base64 4 im ...
- 基于声网 Flat 构建白板插件应用“成语解谜”的最佳实践
前言 本文作者赵杭天.他参加了"2022 RTE 编程挑战赛"--"赛道二 场景化白板插件应用开发" , 并凭借作品"成语解谜"获得了该赛道 ...
- 能让Java开发者提高效率的10个工具
Java受到全球百万计开发者的追捧,已经演变为一门出色的编程语言.最终,这门语言随着技术的变化,不断的被改善以迎合变化的市场需求. 无论你是否拥有一家科技公司,软件已经成为几乎每一个企业不可或缺的 ...
- Teamcenter_NX集成开发:UF_UGMGR函数的使用
最近工作中经常使用Teamcenter.NX集成开发的情况,因此在这里记录UF_UGMGR函数的使用.使用UF_UGMGR相关函数需要有Teamcenter使用经验,理解Teamcenter中文件夹. ...
- 【译】使用 ChatGPT 和 Azure Cosmos DB 构建智能应用程序
原文 | Mark Brown 翻译 | 郑子铭 随着对智能应用程序的需求不断增长,开发人员越来越多地转向人工智能(AI)和机器学习(ML),以增强其应用程序的功能.聊天机器人已经成为提供对话式人工智 ...
- monggodb项目操作
1.回顾 1.express + node 1.1 准备工作 前后端不分离开发 --- 前端负责写页面,后端负责渲染 --- admin-lte 1.2 创建express项目 express mya ...
- python之sys库
sys --- 系统相关的参数和函数 该模块提供了一些变量和函数.这些变量可能被解释器使用,也可能由解释器提供.这些函数会影响解释器.本模块总是可用的. sys.abiflags 在POSIX系统上, ...