#矩阵乘法,斐波那契#洛谷 2544 [AHOI2004] 数字迷阵
分析
oeis找规律得到第一列和第二列的通项公式,然后矩阵乘法
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cmath>
#define rr register
using namespace std;
const double T=0.5*(sqrt(5.0)+1);
struct maix{int p[2][2];}A,ANS;
int mod,n,m;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B){
rr maix C; memset(C.p,0,sizeof(C.p));
for (rr int i=0;i<2;++i)
for (rr int j=0;j<2;++j)
for (rr int k=0;k<2;++k)
C.p[i][j]=mo(C.p[i][j],1ll*A.p[i][k]*B.p[k][j]%mod);
return C;
}
signed main(){
n=iut(); m=iut()-1; mod=iut();
ANS.p[0][0]=(long long)(n*T+n-1)%mod;
ANS.p[0][1]=((2*ANS.p[0][0]-n+1)%mod+mod)%mod;
A.p[0][1]=A.p[1][0]=A.p[1][1]=1;
if (m<2) return !printf("%d",ANS.p[0][m]);
for (;m;m>>=1,A=mul(A,A))
if (m&1) ANS=mul(ANS,A);
return !printf("%d",ANS.p[0][0]);
}
#矩阵乘法,斐波那契#洛谷 2544 [AHOI2004] 数字迷阵的更多相关文章
- [矩阵乘法]斐波那契数列IV
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I V [矩阵乘法]裴波拉契数列IV [矩阵乘法]裴波拉契数列IV Description 求数列f[n]=f[n-2]+f[n-1]+n+1的第N项, ...
- 烦神的斐波那契&&洛谷-1306-斐波那契公约数
传送门 洛谷1306传送门 -------------------------------------------------------------------------------------- ...
- [矩阵乘法]裴波拉契数列III
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...
- [矩阵乘法]裴波拉契数列II
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...
- 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列
矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...
- C# 斐波那契数列 第n项数字/前n项的和
static void Main(string[] args) { int a = Convert.ToInt32(Console.ReadLine()); //求第n位数字是多少 Console.W ...
- Luogu P1306 斐波那契公约数
这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...
- poj3070_斐波那契数列(Fibonacci)
用矩阵求斐波那契数列,快速幂log(n),只用求最后4位(加和乘的运算中前面的位数无用) #include <stdio.h> #include <stdlib.h> int ...
- 斐波那契数列的生成 %1e8 后的结果
方法一 用数组开,一般开到1e7,1e8 左右的数组就是极限了 对时间也是挑战 #include<bits/stdc++.h> using namespace std; ; int ...
- Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
随机推荐
- DataGear 自定义数据可视化看板的图表主题
DataGear 看板的 dg-chart-theme 属性,提供了简单且强大的自定义图表主题功能. 通常,只需要设置其color.backgroundColor.actualBackgroundCo ...
- 【Azure 应用服务】App Service的运行状况检查功能失效,一直提示"实例运行不正常"
问题描述 为App Service配置了健康检查,单独访问Health Check Path的路径,返回代码为200.但为什么在App Service的页面上,一直提示"实例运行不正常&qu ...
- 【Azure API 管理】API Management 访问限制策略[quota-by-key] 中参数 [renewal-period] 的实验和理解
quota-by-key 策略允许根据密钥强制实施可续订或有生存期的调用量和/或带宽配额. 密钥的值可以是任意字符串,通常使用策略表达式来提供密钥. 可以添加可选增量条件,指定应在配额范围内的请求. ...
- [Linux] Linux 自动挂载mount --bind 实现类似目录硬链的效果 (包含ZFS方案)
说明 这个命令用以将一个目录挂载到另一个目录,以实现类似于硬链的操作 但是这个命令只是在内存中建立了一个映射,重启系统之后挂载就消失了 而linux是不支持目录硬链的,具体原因见linux为什么不能硬 ...
- Redis系列:RDB内存快照提供持久化能力
★ Redis24篇集合 1 介绍 从上一篇的 <深刻理解高性能Redis的本质> 中可以知道, 我们经常在数据库层上加一层缓存(如Redis),来保证数据的访问效率. 这样性能确实也有了 ...
- Linux系统查看主机性能
查看主机的CPU性能: cat /proc/cpuinfo cat /proc/meminfo |grep MemTotal 内存信息 查看物理cpu个数:cat /proc/cpuinfo ...
- 学习ASP.NET Core Razor 编程系列文章目录
学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二--添加一个实体 学习ASP.NET Core Razor 编程系列三--创建数据表及创建项目 ...
- 分布式理论 & RPC & Dubbo
分布式服务框架(RPC) 用于提高机器利用率的资源调度和治理中心*(SOA)[ Service Oriented Architecture] Dubbo(RPC框架) 服务提供者**(Provider ...
- KTL 最新支持Qt5窗口编程,一个支持C++14编辑公式的K线技术工具平台
K,K线,Candle蜡烛图. T,技术分析,工具平台 L,公式Language语言使用c++14,Lite小巧简易. 项目仓库:https://github.com/bbqz007/KTL 国内仓库 ...
- Android IjkPlayer解决RTSP延时300ms左右
简介 在上一篇<ijkplayer编译-RTSP>中介绍了,ijkplayer如何进行编译成so库的,以及如何开启rtsp.那么实际在使用的时候会发现延迟不是一般的大. 现在来介绍一下如何 ...