摘要:本文带领大家一起剖析了LiteOS静态内存模块的源代码,包含静态内存的结构体、静态内存池初始化、静态内存申请、释放、清除内容等。

内存管理模块管理系统的内存资源,它是操作系统的核心模块之一,主要包括内存的初始化、分配以及释放。

在系统运行过程中,内存管理模块通过对内存的申请/释放来管理用户和OS对内存的使用,使内存的利用率和使用效率达到最优,同时最大限度地解决系统的内存碎片问题。

Huawei LiteOS的内存管理分为静态内存管理和动态内存管理,提供内存初始化、分配、释放等功能。

  • 动态内存:在动态内存池中分配用户指定大小的内存块。
    • 优点:按需分配。
    • 缺点:内存池中可能出现碎片。
  • 静态内存:在静态内存池中分配用户初始化时预设(固定)大小的内存块。
    • 优点:分配和释放效率高,静态内存池中无碎片。
    • 缺点:只能申请到初始化预设大小的内存块,不能按需申请。

本文主要分析LiteOS静态内存(Memory Box),后续系列会继续分析动态内存。静态内存实质上是一个静态数组,静态内存池内的块大小在初始化时设定,初始化后块大小不可变更。静态内存池由一个控制块和若干相同大小的内存块构成。控制块位于内存池头部,用于内存块管理。内存块的申请和释放以块大小为粒度。

本文通过分析LiteOS静态内存模块的源码,帮助读者掌握静态内存的使用。LiteOS静态内存模块的源代码,均可以在LiteOS开源站点https://gitee.com/LiteOS/LiteOS 获取。静态内存源代码、开发文档,示例程序代码如下:

  • LiteOS内核静态内存源代码

包括静态内存的私有头文件kernel\base\include\los_membox_pri.h、头文件kernel\include\los_membox.h、C源代码文件kernel\base\mem\membox\los_membox.c。

  • 开发指南文档–内存

在线文档https://gitee.com/LiteOS/LiteOS/blob/master/doc/LiteOS_Kernel_Developer_Guide.md#%E5%86%85%E5%AD%98

接下来,我们看下静态内存的结构体,静态内存初始化,静态内存常用操作的源代码。

1、静态内存结构体定义和常用宏定义

1.1 静态内存结构体定义

在文件kernel\include\los_membox.h中,定义静态内存池信息结构体为LOS_MEMBOX_INFO,静态内存节点LOS_MEMBOX_NODE结构体,源代码如下,结构体成员的解释见注释部分。

typedef struct tagMEMBOX_NODE {
struct tagMEMBOX_NODE *pstNext; /**< 静态内存池中空闲节点指针,指向下一个空闲节点 */
} LOS_MEMBOX_NODE; typedef struct {
UINT32 uwBlkSize; /**< 静态内存池的内存块大小 */
UINT32 uwBlkNum; /**< 静态内存池的内存块总数量 */
UINT32 uwBlkCnt; /**< 静态内存池的已分配的内存块总数量 */
#ifdef LOSCFG_KERNEL_MEMBOX_STATIC
LOS_MEMBOX_NODE stFreeList; /**< 静态内存池的空闲内存块单向链表 */
#endif
} LOS_MEMBOX_INFO;

对静态内存使用如下示意图进行说明,对一块静态内存区域,头部是LOS_MEMBOX_INFO信息,接着是各个内存块,每块内存块大小是uwBlkSize,包含内存块节点LOS_MEMBOX_NODE和内存块数据区。空闲内存块节点指向下一块空闲内存块节点。

1.2 静态内存常用宏定义

静态内存头文件中还提供了一些重要的宏定义。⑴处的LOS_MEMBOX_ALLIGNED(memAddr)用于对齐内存地址,⑵处OS_MEMBOX_NEXT(addr, blkSize)根据当前节点内存地址addr和内存块大小blkSize获取下一个内存块的内存地址。⑶处OS_MEMBOX_NODE_HEAD_SIZE表示内存块中节点头大小,每个内存块包含内存节点LOS_MEMBOX_NODE和存放业务的数据区。⑷处表示静态内存的总大小,包含内存池信息结构体占用的大小,和各个内存块占用的大小。

⑴  #define LOS_MEMBOX_ALLIGNED(memAddr) (((UINTPTR)(memAddr) + sizeof(UINTPTR) - 1) & (~(sizeof(UINTPTR) - 1)))

⑵  #define OS_MEMBOX_NEXT(addr, blkSize) (LOS_MEMBOX_NODE *)(VOID *)((UINT8 *)(addr) + (blkSize))

⑶  #define OS_MEMBOX_NODE_HEAD_SIZE sizeof(LOS_MEMBOX_NODE)

⑷  #define LOS_MEMBOX_SIZE(blkSize, blkNum) \
(sizeof(LOS_MEMBOX_INFO) + (LOS_MEMBOX_ALLIGNED((blkSize) + OS_MEMBOX_NODE_HEAD_SIZE) * (blkNum)))

在文件kernel\base\mem\membox\los_membox.c中也定义了一些宏。OS_MEMBOX_MAGIC定义魔术字,⑴处宏在内存块节点从静态内存池中分配出来后,节点指针.pstNext不再指向下一个空闲内存块节点,而是设置为魔术字。⑵处的宏用于校验魔术字。⑶处根据内存块的节点地址获取内存块的数据区地址,⑷处根据内存块的数据区地址获取内存块的节点地址。

    #define OS_MEMBOX_MAGIC 0xa55a5aa5

⑴  #define OS_MEMBOX_SET_MAGIC(addr) \
((LOS_MEMBOX_NODE *)(addr))->pstNext = (LOS_MEMBOX_NODE *)OS_MEMBOX_MAGIC ⑵ #define OS_MEMBOX_CHECK_MAGIC(addr) \
((((LOS_MEMBOX_NODE *)(addr))->pstNext == (LOS_MEMBOX_NODE *)OS_MEMBOX_MAGIC) ? LOS_OK : LOS_NOK) ⑶ #define OS_MEMBOX_USER_ADDR(addr) \
((VOID *)((UINT8 *)(addr) + OS_MEMBOX_NODE_HEAD_SIZE)) ⑷ #define OS_MEMBOX_NODE_ADDR(addr) \
((LOS_MEMBOX_NODE *)(VOID *)((UINT8 *)(addr) - OS_MEMBOX_NODE_HEAD_SIZE))

2、静态内存常用操作

当用户需要使用固定长度的内存时,可以通过静态内存分配的方式获取内存,一旦使用完毕,通过静态内存释放函数归还所占用内存,使之可以重复使用。

2.1 初始化静态内存池

我们分析下初始化静态内存池函数UINT32 LOS_MemboxInit(VOID *pool, UINT32 poolSize, UINT32 blkSize)的代码。我们先看看函数参数,VOID *pool是静态内存池的起始地址,UINT32 poolSize是初始化的静态内存池的总大小,poolSize需要小于等于*pool开始的内存区域的大小,否则会影响后面的内存区域。还需要大于静态内存的头部大小sizeof(LOS_MEMBOX_INFO)。长度UINT32 blkSize是静态内存池中的每个内存块的块大小。

我们看下代码,⑴处对传入参数进行校验。⑵处设置静态内存池中每个内存块的实际大小,已内存对齐,也算上内存块中节点信息。⑶处计算内存池中内存块的总数量,然后设置已用内存块数量.uwBlkCnt为0。⑷处如果可用的内存块为0,返回初始化失败。⑸处获取内存池中的第一个空闲内存块节点。⑹处把空闲内存块挂载在静态内存池信息结构体空闲内存块链表stFreeList.pstNext上,然后每个空闲内存块依次指向下一个空闲内存块,链接起来。

LITE_OS_SEC_TEXT_INIT UINT32 LOS_MemboxInit(VOID *pool, UINT32 poolSize, UINT32 blkSize)
{
LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;
LOS_MEMBOX_NODE *node = NULL;
UINT32 index;
UINT32 intSave; ⑴ if (pool == NULL) {
return LOS_NOK;
} if (blkSize == 0) {
return LOS_NOK;
} if (poolSize < sizeof(LOS_MEMBOX_INFO)) {
return LOS_NOK;
} MEMBOX_LOCK(intSave);
⑵ boxInfo->uwBlkSize = LOS_MEMBOX_ALLIGNED(blkSize + OS_MEMBOX_NODE_HEAD_SIZE);
⑶ boxInfo->uwBlkNum = (poolSize - sizeof(LOS_MEMBOX_INFO)) / boxInfo->uwBlkSize;
boxInfo->uwBlkCnt = 0;
⑷ if ((boxInfo->uwBlkNum == 0) || (boxInfo->uwBlkSize < blkSize)) {
MEMBOX_UNLOCK(intSave);
return LOS_NOK;
} ⑸ node = (LOS_MEMBOX_NODE *)(boxInfo + 1); ⑹ boxInfo->stFreeList.pstNext = node; for (index = 0; index < (boxInfo->uwBlkNum - 1); ++index) {
node->pstNext = OS_MEMBOX_NEXT(node, boxInfo->uwBlkSize);
node = node->pstNext;
} node->pstNext = NULL; MEMBOX_UNLOCK(intSave); return LOS_OK;
}

2.2 清除静态内存块内容

我们可以使用函数VOID LOS_MemboxClr(VOID *pool, VOID *box)来清除静态内存块内容,需要2个参数,VOID *pool是初始化过的静态内存池地址。VOID *box是需要清除内容的静态内存块的数据区的起始地址,注意这个不是内存块的节点地址,每个内存块的节点区不能清除。下面分析下源码。

⑴处对参数进行校验,⑵处调用memset_s()函数把内存块的数据区写入0。写入的开始地址是内存块的数据区的起始地址VOID *box,写入长度是数据区的长度boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE。

LITE_OS_SEC_TEXT_MINOR VOID LOS_MemboxClr(VOID *pool, VOID *box)
{
LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;
UINT32 intSave; ⑴ if ((pool == NULL) || (box == NULL)) {
return;
} MEMBOX_LOCK(intSave);
⑵ (VOID)memset_s(box, (boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE), 0,
(boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE));
MEMBOX_UNLOCK(intSave);
}

2.3 申请、释放静态内存

初始化静态内存池后,我们可以使用函数VOID *LOS_MemboxAlloc(VOID *pool)来申请静态内存,下面分析下源码。

⑴处获取静态内存池空闲内存块链表头结点,如果链表不为空,执行⑵,把下一个可用节点赋值给nodeTmp。⑶处把链表头结点执行下一个的下一个链表节点,然后执行⑷把分配出来的内存块设置魔术字,接着把内存池已用内存块数量加1。⑸处返回时调用宏OS_MEMBOX_USER_ADDR()计算出内存块的数据区域地质。

LITE_OS_SEC_TEXT VOID *LOS_MemboxAlloc(VOID *pool)
{
LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;
LOS_MEMBOX_NODE *node = NULL;
LOS_MEMBOX_NODE *nodeTmp = NULL;
UINT32 intSave; if (pool == NULL) {
return NULL;
} MEMBOX_LOCK(intSave);
⑴ node = &(boxInfo->stFreeList);
if (node->pstNext != NULL) {
⑵ nodeTmp = node->pstNext;
⑶ node->pstNext = nodeTmp->pstNext;
⑷ OS_MEMBOX_SET_MAGIC(nodeTmp);
boxInfo->uwBlkCnt++;
}
MEMBOX_UNLOCK(intSave); ⑸ return (nodeTmp == NULL) ? NULL : OS_MEMBOX_USER_ADDR(nodeTmp);
}

对申请的内存块使用完毕,我们可以使用函数UINT32 LOS_MemboxFree(VOID *pool, VOID *box)来释放静态内存,需要2个参数,VOID *pool是初始化过的静态内存池地址。VOID *box是需要释放的静态内存块的数据区的起始地址,注意这个不是内存块的节点地址。下面分析下源码。

⑴处根据待释放的内存块的数据区域地址获取节点地址node,⑵对要释放的内存块先进行校验。⑶处把要释放的内存块挂在内存池空闲内存块链表上,然后执行⑷把已用数量减1。

LITE_OS_SEC_TEXT UINT32 LOS_MemboxFree(VOID *pool, VOID *box)
{
LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;
UINT32 ret = LOS_NOK;
UINT32 intSave; if ((pool == NULL) || (box == NULL)) {
return LOS_NOK;
} MEMBOX_LOCK(intSave);
do {
⑴ LOS_MEMBOX_NODE *node = OS_MEMBOX_NODE_ADDR(box);
⑵ if (OsCheckBoxMem(boxInfo, node) != LOS_OK) {
break;
} ⑶ node->pstNext = boxInfo->stFreeList.pstNext;
boxInfo->stFreeList.pstNext = node;
⑷ boxInfo->uwBlkCnt--;
ret = LOS_OK;
} while (0);
MEMBOX_UNLOCK(intSave); return ret;
}

接下来,我们再看看校验函数OsCheckBoxMem()。⑴如果内存池的块大小为0,返回校验失败。⑵处计算出要释放的内存快节点相对第一个内存块节点的偏移量offset。⑶如果偏移量除以内存块数量余数不为0,返回校验失败。⑷如果偏移量除以内存块数量的商大于等于内存块的数量,返回校验失败。⑸调用宏OS_MEMBOX_CHECK_MAGIC校验魔术字。

STATIC INLINE UINT32 OsCheckBoxMem(const LOS_MEMBOX_INFO *boxInfo, const VOID *node)
{
UINT32 offset; ⑴ if (boxInfo->uwBlkSize == 0) {
return LOS_NOK;
} ⑵ offset = (UINT32)((UINTPTR)node - (UINTPTR)(boxInfo + 1));
⑶ if ((offset % boxInfo->uwBlkSize) != 0) {
return LOS_NOK;
} ⑷ if ((offset / boxInfo->uwBlkSize) >= boxInfo->uwBlkNum) {
return LOS_NOK;
} ⑸ return OS_MEMBOX_CHECK_MAGIC(node);
}

3、Membox管理算法

Membox内存管理,支持静态内存和动态内存,二选一,分别由宏开关LOSCFG_KERNEL_MEMBOX_STATIC和LOSCFG_KERNEL_MEMBOX_DYNAMIC进行控制。
Membox静态内存是默认算法,需要开发者提供一个栈中的静态内存区域;Membox动态内存支持从堆里动态分配内存,相应的内存代码在kernel\base\mem\membox\los_membox_dyn.c,代码比较简单,读者们自行阅读即可。

本文分享自华为云社区《LiteOS内核源码分析系列十二 静态内存Static Memory》,原文作者:zhushy 。

点击关注,第一时间了解华为云新鲜技术~

LiteOS内核源码分析:静态内存Static Memory的更多相关文章

  1. LiteOS内核源码分析:任务LOS_Schedule

    摘要:调度,Schedule也称为Dispatch,是操作系统的一个重要模块,它负责选择系统要处理的下一个任务.调度模块需要协调处于就绪状态的任务对资源的竞争,按优先级策略从就绪队列中获取高优先级的任 ...

  2. v76.01 鸿蒙内核源码分析(共享内存) | 进程间最快通讯方式 | 百篇博客分析OpenHarmony源码

    百篇博客分析|本篇为:(共享内存篇) | 进程间最快通讯方式 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) | 同样 ...

  3. v86.01 鸿蒙内核源码分析 (静态分配篇) | 很简单的一位小朋友 | 百篇博客分析 OpenHarmony 源码

    本篇关键词:池头.池体.节头.节块 内存管理相关篇为: v31.02 鸿蒙内核源码分析(内存规则) | 内存管理到底在管什么 v32.04 鸿蒙内核源码分析(物理内存) | 真实的可不一定精彩 v33 ...

  4. 鸿蒙内核源码分析(静态站点篇) | 五一哪也没去就干了这事 | 百篇博客分析OpenHarmony源码 | v52.02

    百篇博客系列篇.本篇为: v52.xx 鸿蒙内核源码分析(静态站点篇) | 五一哪也没去就干了这事 | 51.c.h.o 前因后果相关篇为: v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 ...

  5. 鸿蒙内核源码分析(静态链接篇) | 完整小项目看透静态链接过程 | 百篇博客分析OpenHarmony源码 | v54.01

    百篇博客系列篇.本篇为: v54.xx 鸿蒙内核源码分析(静态链接篇) | 完整小项目看透静态链接过程 | 51.c.h.o 下图是一个可执行文件编译,链接的过程. 本篇将通过一个完整的小工程来阐述E ...

  6. Linux内核源码分析 day01——内存寻址

    前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...

  7. 鸿蒙内核源码分析(内存主奴篇) | 皇上和奴才如何相处 | 百篇博客分析OpenHarmony源码 | v10.04

    百篇博客系列篇.本篇为: v10.xx 鸿蒙内核源码分析(内存主奴篇) | 皇上和奴才如何相处 | 51.c.h .o 前因后果相关篇为: v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 ...

  8. 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视GCC编译全过程 | 百篇博客分析OpenHarmony源码| v57.01

    百篇博客系列篇.本篇为: v57.xx 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿蒙 ...

  9. 鸿蒙内核源码分析(进程镜像篇)|ELF是如何被加载运行的? | 百篇博客分析OpenHarmony源码 | v56.01

    百篇博客系列篇.本篇为: v56.xx 鸿蒙内核源码分析(进程映像篇) | ELF是如何被加载运行的? | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应 ...

  10. 鸿蒙内核源码分析(重定位篇) | 与国际接轨的对外部发言人 | 百篇博客分析OpenHarmony源码 | v55.01

    百篇博客系列篇.本篇为: v55.xx 鸿蒙内核源码分析(重定位篇) | 与国际接轨的对外部发言人 | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应用程 ...

随机推荐

  1. 从基础到实践,回顾Elasticsearch 向量检索发展史

    本文分享自华为云社区<Elasticsearch向量检索的演进与变革:从基础到应用>,作者: 汀丶. 1.引言 向量检索已经成为现代搜索和推荐系统的核心组件. 通过将复杂的对象(例如文本. ...

  2. 自编码器AE全方位探析:构建、训练、推理与多平台部署

    本文深入探讨了自编码器(AE)的核心概念.类型.应用场景及实战演示.通过理论分析和实践结合,我们详细解释了自动编码器的工作原理和数学基础,并通过具体代码示例展示了从模型构建.训练到多平台推理部署的全过 ...

  3. Java文件与IO流

    首先我们要清楚什么是流,正如其名,很形象,流就是像水一样的东西,具有方向性,在java中 ,流大概就是类 接下来,我们要对输入输出流有一个基本认识,什么是输入输出流呢? 输入输出明显需要一个参照,而这 ...

  4. Java内部类与匿名类

    内部类 定义: 一个类的内部又完整的嵌套了另一个类结构,被嵌套的类就被我们称为内部类,嵌套内部类的类被我们称为外部类 //外部类 class Outer { //内部类 class Inner { } ...

  5. 两款轻便且功能强大的gif截取工具 [ScreenToGif] 和 [GifCam]

    轻便且强大 提示 下述工具下载链接为官方或github地址,可能会由于你懂得的原因,而无法打开. 一.ScreenToGif 软件简介: ScreenToGif 也是一款非常轻便的.完全免费的.没广告 ...

  6. 聊聊Flink必知必会(五)

    聊聊Flink的必知必会(三) 聊聊Flink必知必会(四) 从源码中,根据关键的代码,梳理一下Flink中的时间与窗口实现逻辑. WindowedStream 对数据流执行keyBy()操作后,再调 ...

  7. Ubuntu 20.04 开启局域网唤醒(WoL)

    打开主板相关设置 创建 systemd 自启动设置文件 vim /etc/systemd/system/wol@.service 放入以下内容: [Unit] Description=Wake-on- ...

  8. python列表删除元素之del,pop()和remove()

    del函数 如果知道要删除元素在列表中的位置,可以使用del语句: list_1 = ['one', 'two', 'three'] print(list_1) del list_1[0] print ...

  9. SQL 语言标准简介

    版权声明:原创作品,谢绝转载!否则将追究法律责任. ----- 作者:kirin 一.简介 结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是 ...

  10. css面试题随笔

    之前在前端群有个汉纸聊到他面试别人时问到:margin塌陷和margin合并问题如何解决? 然后我自己也懵逼了哈哈,因为只是遇到过并不知道这叫塌陷.合并哈哈哈················那我们一起 ...