AT_arc041_b 题解
本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读。
题目简述
给定一个 \(N \times M\) 的矩阵,此矩阵的每一个元素都向上、下、左、右 \(4\) 个方向同时扩散(原来的位置不保留)。
现给出原矩阵扩散后的矩阵,求原矩阵。
思路
对于扩散后的 \((i,j)\),是原矩阵的 \((i-1,j)\),\((i+1,j)\),\((i,j-1)\),\((i,j+1)\) 扩散而来的,那么就可以通过这 \(4\) 个点推断出原矩阵上 \((i,j)\) 的数。
例如:
010
101
010
这个样例中,只有 \((2,2)\) 周围 \(4\) 个方向都是非 \(0\) 数,所以从这个例子中就可推出计算原矩阵上 \((i,j)\) 的数的方程式了:
\]
那么就会产生一个疑问,对于边界有没有特殊情况?比如对于 \((1,1)\) 他的方程式带入就为:
\]
所以对于边界 \((0,1)\) 和 \((1,0)\) 的初始化就尤为重要,这里建议初始化为 \(0\),这样取 \(\min\) 之后就为 \(0\) 了。
处理完边界的初始化之后基本就没什么了,不过我们还是要思考一下,比如对于以下情况:
0000000
0001000
0030400
0209030
0050600
0003000
0000000
\((2,3)\) 并不是边界并且也不满足四周都是非 \(0\) 数,那么它是不是一种特殊情况?会不会不满足上面推出的方程式?答案是肯定的,因为 \((2,3)\) 的上、左两个方向的数是 \(0\),则取 \(\min\) 之后就一定为 \(0\) 了。
经过以上分析以及一些证明,基本就有大致的代码框架了:
#include<iostream>
using namespace std;
int n, m, mp[505][505]; // mp 记录地图
char c; // 临时储存
int main() {
cin >> n >> m;
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++) {
cin >> c;
mp[i][j] = c - '0'; // 转化为数字
}
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= m; j ++) {
int minn = min(min(mp[i - 1][j], mp[i + 1][j]), min(mp[i][j - 1], mp[i][j + 1])); // 计算 minn 值
cout << minn; // 可直接输出
// 把周围扩散的数减去
mp[i - 1][j] -= minn; mp[i + 1][j] -= minn;
mp[i][j - 1] -= minn; mp[i][j + 1] -= minn;
}
cout << endl; // 记得换行
}
return 0;
}
\]
AT_arc041_b 题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- 鸿蒙HarmonyOS实战-Stage模型(信息传递载体Want)
前言 应用中的信息传递是为了实现各种功能和交互.信息传递可以帮助用户和应用之间进行有效的沟通和交流.通过信息传递,应用可以向用户传递重要的消息.通知和提示,以提供及时的反馈和指导.同时,用户也可以通过 ...
- Android 13 - Media框架(29)- MediaCodec(四)
关注公众号免费阅读全文,进入音视频开发技术分享群! 上一节我们了解了如何通过 onInputBufferAvailable 和 getInputBuffer 获取到 input buffer inde ...
- 音视频-YUV数据格式
一.YUV格式 1)kCVPixelFormatType_420YpCbCr8PlanarFullRange = 'f420' 对应YUV I420格式 2)kCVPixelFormatType_42 ...
- 算法金 | Python 中有没有所谓的 main 函数?为什么?
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 定义和背景 在讨论Python为何没有像C或Java那样的明确的main函数之前,让 ...
- MySQL入门到精通(十):SQL优化第一篇(2021最新发布)
SQL优化 1. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,创建表时N ...
- ansible-role角色
官网文档 https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html 为什么要用role 之前你部署的n ...
- 记录用C#写折半查找算法实现
折半查找算法 前言 最近要考试了,重新回顾一下之前学的算法,今天是折半查找,它的平均比较次数是Log2 n 思想 给定一个有序数组A[0..n-1],和查找值K,返回K在A中的下标. 折半查找需要指定 ...
- Linux内核:通知链 机制
Linux内核:通知链 机制 背景 在驱动分析中经常看到fb_notifier_callback,现在趁有空学习一下. 参考: https://www.cnblogs.com/armlinux/arc ...
- Python_10 debug、类和对象
一.查缺补漏 APP测试流程梳理https://www.cnblogs.com/dengqing9393/p/6497068.html 有关类的知识点http://testingpai.com/art ...
- mac环境搭建
brew 参考:https://zhuanlan.zhihu.com/p/111014448 ## 更新 homebrew-cask cd "$(brew --repo)"/Lib ...