Problem Statement

There is a rooted tree with $N$ vertices, Vertex $1$ being the root.
For each $i = 1, 2, \ldots, N-1$, the $i$-th edge connects Vertex $u_i$ and Vertex $v_i$.
Each vertex other than the root has a positive integer written on it: for each $i = 2, 3, \ldots, N$, the integer written on Vertex $i$ is $A_i$.
Takahashi and Aoki will use this rooted tree and a piece to play the following game against each other.

The piece starts on Vertex $1$. Until the game ends, they repeat the following procedure.

  1. First, Aoki chooses a non-root vertex and replaces the integer written on that vertex with $0$.
  2. Next, Takahashi moves the piece to a (direct) child of the vertex the piece is on.
  3. Then, the game ends if the piece is on a leaf. Even if that is not the case, Takahashi can choose to end the game immediately.

At the end of the game, Takahashi's score will be the integer written at that time on the vertex the piece is on.
Takahashi wants to make his score as large as possible, while Aoki wants to make it as small as possible.
Print the score Takahashi will get when both players play optimally for their respective purposes.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq 10^9$
  • $1 \leq u_i, v_i \leq N$
  • The given graph is a tree.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_2$ $\ldots$ $A_N$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_{N-1}$ $v_{N-1}$

Output

Print the answer.


Sample Input 1

7
2 4 6 5 6 10
1 2
1 3
2 4
2 5
5 6
5 7

Sample Output 1

5

Here is a possible progression of the game when both players play optimally.

  1. The piece starts on Vertex $1$.
  2. Aoki changes the integer written on Vertex $7$ from $10$ to $0$.
  3. Takahashi moves the piece from Vertex $1$ to Vertex $2$.
  4. Aoki changes the integer written on Vertex $4$ from $6$ to $0$.
  5. Takahashi moves the piece from Vertex $2$ to Vertex $5$.
  6. Takahashi chooses to end the game.

At the end of the game, the piece is on Vertex $5$, on which the integer $5$ is written at that time, so Takahashi's score will be $5$.


Sample Input 2

30
29 27 79 27 30 4 93 89 44 88 70 75 96 3 78 39 97 12 53 62 32 38 84 49 93 53 26 13 25
13 15
14 22
17 24
12 3
4 3
5 8
26 15
3 2
2 9
4 25
4 13
2 10
28 15
6 4
2 5
19 9
2 7
2 14
23 30
17 2
7 16
21 13
13 23
13 20
1 2
6 18
27 6
21 29
11 8

Sample Output 2

70

首先发现如果 Aoki 漫无目的地操作,是难以移到好的地方的。所以我们可以通过二分来给他定一个目标。

设现在二分出来 Aoki 的目标是 \(x\) 分,那么所有大于等于 \(x\) 的节点都要在 Takahashi 到达这个点之前被 Aoki 删掉。那么我们记录 \(dp_i\) 为如果要使以 \(i\) 为根的子树满足要求,需要 \(i\) 上面的点多帮忙删几个点。那么\(dp_i=\max((\sum\limits_{j\in son}dp_j) -1,0)+(a[i]>t)\)。最终判断 \(dp_i\) 是否为 \(0\) 即可。

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int n,a[N],u,v,hd[N],e_num,l,r;
struct edge{
int v,nxt;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
int dfs(int x,int y,int t)
{
int ret=0;
for(int i=hd[x];i;i=e[i].nxt)
if(e[i].v!=y)
ret+=dfs(e[i].v,x,t);
return max(ret-1,0)+(a[x]>t);
}
int check(int x)
{
return dfs(1,0,x)==0;
}
int main()
{
scanf("%d",&n);
for(int i=2;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
l=0,r=1e9+1;
while(l<=r)
{
int md=l+r>>1;
if(check(md))
r=md-1;
else
l=md+1;
}
printf("%d",l);
}

[ABC246G] Game on Tree 3的更多相关文章

  1. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  2. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  3. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  4. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  5. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  6. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  7. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  8. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  9. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

  10. Tree树节点选中及取消和指定节点的隐藏

    指定节点变色 指定节点隐藏 单击节点 未选中则选中该节点 已选中则取消该节点 前台: 1.HTML <ul id="listDept" name="listDept ...

随机推荐

  1. U268603 I Hate This Tree 题解

    传送门 一道纯粹的码力 + 卡常题. 前置 矩阵乘法,线段树. 分析 线段树存矩阵. 构造迭代矩阵: \[\begin{pmatrix}f_i&f_{i-1}\end{pmatrix}\tim ...

  2. Spring Boot通过企业邮箱发邮件被Gmail退回的问题解决方法

    这两天给我们开发的Chrome插件:Youtube中文配音增加了账户注册和登录功能,其中有一步是邮箱验证,所以这边会在Spring Boot后台给用户的邮箱发个验证信息.如果发邮件,之前的文章教程里就 ...

  3. Dynamics 365 自定义渠道的步骤

    1.创建2个实体:渠道[new_flashinfosmschannel].消息模板(配置窗体)注意:如果想用标准消息模板,可以不用创建消息模板 标准消息模板效果: 2.导出解决方案,往XML增加一个关 ...

  4. 精选版:用Java扩展Nginx(nginx-clojure 入门)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 今天咱们以Java程序员的视角,来聊聊如何用 ...

  5. C#结合OpenCVSharp4图片相似度识别

    OpenCVSharp4图片相似度识别 需求背景:需要计算两个图片的相似度,然后将相似的图片进行归纳 1. 图片相似度算法 由于我是CRUD后端仔,对图像处理没什么概念.因此网上调研了几种相似度算法分 ...

  6. Vika and Her Friends

    Smiling & Weeping ----早知道思念那么浓烈,不分手就好了 题目链接:Problem - A - Codeforces 题目大意:有n个Vika的朋友在一个n*m的方格中去捉 ...

  7. Go类型全解:常量与变量大全!

    本篇文章深入探讨了 Go 语言中类型确定值.类型不确定值以及对应类型转换的知识点,后续充分解析了常量与变量及其高级用法,并举出丰富的案例. 关注公众号[TechLeadCloud],分享互联网架构.云 ...

  8. xmind文件数据解析重构成mindmap可识别数据

    [需求背景] 测试平台开发中,需要引入前端mindmap模块,进行在线xmind实时解析并前端展示 [卡点难点] 选取什么库进行xmind解析 如何转换成mindmap可以识别的数据 [xmind解析 ...

  9. Solution -「GXOI / GZOI 2019」宝牌一大堆

    Description Link. Summarizing the fucking statement is the last thing in the world I ever want to do ...

  10. AT 下分记录

    7.30 AGC063 \(+30=1620\) B 做法假 WA 了三次,为啥总是吃了罚时才能发现问题啊 心态还是需要解决的问题.过完 B 啥都想不出来又自闭了