NC13885 Music Problem
题目
题目描述
Listening to the music is relax, but for obsessive(强迫症), it may be unbearable.
HH is an obsessive, he only start to listen to music at 12:00:00, and he will never stop unless the song he is listening ends at integral points (both minute and second are 0 ), that is, he can stop listen at 13:00:00 or 14:00:00,but he can't stop at 13:01:03 or 13:01:00, since 13:01:03 and 13:01:00 are not an integer hour time.
Now give you the length of some songs, tell HH whether it's possible to choose some songs so he can stop listen at an integral point, or tell him it's impossible.
Every song can be chosen at most once.
输入描述
The first line contains an positive integer \(T(1≤T≤60)\) , represents there are \(T\) test cases.
For each test case:
The first line contains an integer \(n(1≤n≤10^5)\) , indicating there are \(n\) songs.
The second line contains \(n\) integers \(a_1,a_2…a_n (1≤a_i≤10^9 )\) , the ith integer \(a_i\) indicates the ith song lasts \(a_i\) seconds.
输出描述
For each test case, output one line "YES" (without quotes) if HH is possible to stop listen at an integral point, and "NO" (without quotes) otherwise.
示例1
输入
3
3
2000 1000 3000
3
2000 3000 1600
2
5400 1800
输出
NO
YES
YES
说明
In the first example it's impossible to stop at an integral point.
In the second example if we choose the first and the third songs, they cost 3600 seconds in total, so HH can stop at 13:00:00
In the third example if we choose the first and the second songs, they cost 7200 seconds in total, so HH can stop at 14:00:00
题解
方法一
知识点:背包dp。
此题01背包很好做但不优化会超时。
首先设置状态 \(dp[i][j]\) 为考虑了 \(i\) 首,时长模 \(3600\) 的余数为 \(j\) 的情况是否存在。模的操作是一个很关键的操作,优化了算法并最大化信息有效率,因为我们知道余数就可以知道是否整点了。
注意因为成功条件就是余数为 \(0\) ,我们不能一开始给 \(0\) 初值为 \(1\) ,但后果是某首自己的时间没法直接进入,因为无法从 \(0\) 转移,因此要特判。
但这样还不能过,需要有个跳出条件,显然 \(dp[i][0] = 1\) 时可以直接跳出。
还有个优化,但这里可以不需要,\(n\geq3600\) 时一定能成功,因为有根据抽屉原理,此时存在两个不同端点的时间余数前缀和是相同的,于是以这两个端点的连续区间和是 \(3600\) 的倍数,即余数为 \(0\) 。
最终还能滚动数组优化空间。
时间复杂度 \(O(n)\)
空间复杂度 \(O(1)\)
方法二
知识点:背包dp,STL。
由于是一个 01背包中的01类型,因此可以 bitset 常数优化。写起来也简单。
时间复杂度 \(O(n)\)
空间复杂度 \(O(1)\)
代码
方法一
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool dp[2][3607];
int a[100007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], a[i] %= 3600;
if (n >= 3600) return true;///必然能得到连续的和为3600倍数的(这道题没这个特判也行)
memset(dp, 0, sizeof(dp));
for (int i = 1;i <= n;i++) {
dp[i & 1][a[i]] = 1;///由于j=0保留为0,所以从j=0传递特判
for (int j = 0;j <= 3599;j++) {
dp[i & 1][j] |= dp[i + 1 & 1][j] | dp[i + 1 & 1][(j - a[i] + 3600) % 3600];
}
if (dp[i & 1][0]) return true;///优化
}
return false;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
else cout << "YES" << '\n';
}
return 0;
}
方法二
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], a[i] %= 3600;
if (n >= 3600) return true;///必然能得到连续的和为3600倍数的(这道题没这个特判也行)
bitset<3607> dp;
for (int i = 1;i <= n;i++) {
dp |= dp << a[i] | dp >> (3600 - a[i]);///多出去那部分也要
dp[a[i]] = 1;///单独考虑
}
return dp[0];
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
else cout << "YES" << '\n';
}
return 0;
NC13885 Music Problem的更多相关文章
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- PHP curl报错“Problem (2) in the Chunked-Encoded data”解决方案
$s = curl_init(); curl_setopt($s, CURLOPT_POST, true); curl_setopt($s, CURLOPT_POSTFIELDS, $queryStr ...
随机推荐
- springboot启动流程 (1) 流程概览
本文将通过阅读源码方式分析SpringBoot应用的启动流程,不涉及Spring启动部分(有相应的文章介绍). 本文不会对各个流程做展开分析,后续会有文章介绍详细流程. SpringApplicati ...
- 非标准库--conio.h库
1.getch函数 主要内容 int getch(void): 所在头文件:conio.h 函数用途:从控制台读取一个字符,但不显示在屏幕上,即一个不需要通过ENTER确定的getchar. 函数原型 ...
- SQL联结
1联结 那我们又该如何创建联结呢? So easy! 规定要联结的所有表以及它们如何关联就可以了. 在设置关联条件时,为避免不同表被引用的列名相同,我们需要使用完全限定列名(用一个点分隔表名和列名), ...
- Mygin实现动态路由
本篇是Mygin的第四篇 目的 使用 Trie 树实现动态路由解析. 参数绑定 前缀树 本篇比前几篇要复杂一点,原来的路由是用map实现,索引非常高效,但是有一个弊端,键值对的存储的方式,只能用来索引 ...
- [转帖]是的你没看错,HTTP3来了
https://www.jianshu.com/p/288ce6a8ab88 简介 很多小伙伴可能还沉浸在HTTP1.1的世界无法自拔,但是时代的洪流已经带领我们来到了HTTP3的世界了.是的,你在桥 ...
- [转帖]PD Config Learn the PD configuration file
The PD configuration file supports more options than command-line parameters. You can find the defau ...
- [转帖]Linux终端:用cat命令查看不可见字符
https://developer.aliyun.com/article/80607 printf 'testing\012\011\011testing\014\010\012more testin ...
- 银河麒麟系统信息获取V1.0版本
银河麒麟系统信息获取 摘要 最近项目有一些兼容性测试需求. 可能需要获取一些系统配置信息便于相关的工作. 想着自己总结一下. 便于后续的不太熟悉的同事进行简要处理 银河麒麟获取版本 nkvers # ...
- Find -mtime 的图解
- 【k哥爬虫普法】Python程序员爬取视频资源13万部,一分钱没挣,获刑2年!
我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了"K哥爬虫普法"专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识, ...