C/C++ 使用API实现数据压缩与解压缩
在Windows编程中,经常会遇到需要对数据进行压缩和解压缩的情况,数据压缩是一种常见的优化手段,能够减小数据的存储空间并提高传输效率。Windows提供了这些API函数,本文将深入探讨使用Windows API进行数据压缩与解压缩的过程,主要使用ntdll.dll库中的相关函数。
RtlGetCompressionWorkSpaceSize
RtlGetCompressionWorkSpaceSize 函数,位于ntdll.dll库中。该函数用于获取数据压缩所需的工作空间大小。CompressionFormatAndEngine参数指定压缩格式和引擎,CompressBufferWorkSpaceSize和CompressFragmentWorkSpaceSize分别用于输出缓冲区和片段的工作空间大小。
以下是该函数的声明:
typedef NTSTATUS(WINAPI *typedef_RtlGetCompressionWorkSpaceSize)(
_In_ USHORT CompressionFormatAndEngine,
_Out_ PULONG CompressBufferWorkSpaceSize,
_Out_ PULONG CompressFragmentWorkSpaceSize
);
该函数有以下参数:
- CompressionFormatAndEngine:指定压缩格式和引擎的参数。
- CompressBufferWorkSpaceSize:用于输出压缩缓冲区工作空间大小的指针。
- CompressFragmentWorkSpaceSize:用于输出压缩片段工作空间大小的指针。
函数返回NTSTATUS类型的状态码,其中STATUS_SUCCESS表示成功执行。
在使用这个函数时,你需要提供足够大的缓冲区来存储工作空间大小。可以按照以下步骤使用该函数:
- 加载 ntdll.dll 库。
- 获取 RtlGetCompressionWorkSpaceSize 函数地址。
- 定义变量用于存储工作空间大小。
- 调用 RtlGetCompressionWorkSpaceSize 函数,获取工作空间大小。
RtlCompressBuffer
RtlCompressBuffer 同样位于ntdll.dll库中。该函数用于将数据进行压缩。CompressionFormatAndEngine参数指定压缩格式和引擎,UncompressedBuffer和UncompressedBufferSize表示输入的未压缩数据,CompressedBuffer和CompressedBufferSize表示输出的压缩数据,UncompressedChunkSize表示未压缩数据的块大小,FinalCompressedSize表示最终压缩后的大小,WorkSpace表示用于工作的缓冲区。
以下是该函数的声明:
typedef NTSTATUS(WINAPI *typedef_RtlCompressBuffer)(
_In_ USHORT CompressionFormatAndEngine,
_In_ PUCHAR UncompressedBuffer,
_In_ ULONG UncompressedBufferSize,
_Out_ PUCHAR CompressedBuffer,
_In_ ULONG CompressedBufferSize,
_In_ ULONG UncompressedChunkSize,
_Out_ PULONG FinalCompressedSize,
_In_ PVOID WorkSpace
);
该函数的参数包括:
- CompressionFormatAndEngine:指定压缩格式和引擎的参数。
- UncompressedBuffer:指向待压缩数据的指针。
- UncompressedBufferSize:待压缩数据的大小。
- CompressedBuffer:指向存储压缩数据的缓冲区的指针。
- CompressedBufferSize:存储压缩数据的缓冲区的大小。
- UncompressedChunkSize:未压缩的数据块的大小。
- FinalCompressedSize:用于输出最终压缩数据的大小的指针。
- WorkSpace:用于提供工作空间的指针。
函数返回NTSTATUS类型的状态码,其中STATUS_SUCCESS表示成功执行。
在使用这个函数时,你需要提供足够大的缓冲区来存储压缩后的数据。可以按照以下步骤使用该函数:
- 加载
ntdll.dll库。 - 获取
RtlCompressBuffer函数地址。 - 定义变量并分配内存用于存储未压缩的数据和压缩后的数据。
- 定义变量用于存储工作空间。
- 调用
RtlCompressBuffer函数,将数据进行压缩。 - 处理压缩后的数据。
RtlDecompressBuffer
RtlDecompressBuffer 同样位于ntdll.dll库中。该函数用于将压缩数据进行解压缩。CompressionFormat参数指定压缩格式,UncompressedBuffer和UncompressedBufferSize表示输出的未压缩数据,CompressedBuffer和CompressedBufferSize表示输入的压缩数据,FinalUncompressedSize表示最终解压缩后的大小。
以下是该函数的声明:
typedef NTSTATUS(WINAPI *typedef_RtlDecompressBuffer)(
_In_ USHORT CompressionFormat,
_Out_ PUCHAR UncompressedBuffer,
_In_ ULONG UncompressedBufferSize,
_In_ PUCHAR CompressedBuffer,
_In_ ULONG CompressedBufferSize,
_Out_ PULONG FinalUncompressedSize
);
该函数的参数包括:
- CompressionFormat:指定解压缩的格式。
- UncompressedBuffer:指向存储解压后数据的缓冲区的指针。
- UncompressedBufferSize:存储解压后数据的缓冲区的大小。
- CompressedBuffer:指向待解压数据的指针。
- CompressedBufferSize:待解压数据的大小。
- FinalUncompressedSize:用于输出最终解压后数据的大小的指针。
函数返回NTSTATUS类型的状态码,其中STATUS_SUCCESS表示成功执行。
在使用这个函数时,你需要提供足够大的缓冲区来存储解压后的数据。可以按照以下步骤使用该函数:
- 加载
ntdll.dll库。 - 获取
RtlDecompressBuffer函数地址。 - 定义变量并分配内存用于存储待解压的数据和解压后的数据。
- 调用
RtlDecompressBuffer函数,将数据进行解压。 - 处理解压后的数据。
// 代码来源 《WINDOWS黑客编程技术详解》
// 作者:甘迪文
#include <Windows.h>
#include <iostream>
#include <windef.h>
typedef NTSTATUS(WINAPI *typedef_RtlGetCompressionWorkSpaceSize)(
_In_ USHORT CompressionFormatAndEngine,
_Out_ PULONG CompressBufferWorkSpaceSize,
_Out_ PULONG CompressFragmentWorkSpaceSize
);
typedef NTSTATUS(WINAPI *typedef_RtlCompressBuffer)(
_In_ USHORT CompressionFormatAndEngine,
_In_ PUCHAR UncompressedBuffer,
_In_ ULONG UncompressedBufferSize,
_Out_ PUCHAR CompressedBuffer,
_In_ ULONG CompressedBufferSize,
_In_ ULONG UncompressedChunkSize,
_Out_ PULONG FinalCompressedSize,
_In_ PVOID WorkSpace
);
typedef NTSTATUS(WINAPI *typedef_RtlDecompressBuffer)(
_In_ USHORT CompressionFormat,
_Out_ PUCHAR UncompressedBuffer,
_In_ ULONG UncompressedBufferSize,
_In_ PUCHAR CompressedBuffer,
_In_ ULONG CompressedBufferSize,
_Out_ PULONG FinalUncompressedSize
);
// 数据压缩
BOOL CompressData(BYTE *pUncompressData, DWORD dwUncompressDataLength, BYTE **ppCompressData, DWORD *pdwCompressDataLength)
{
BOOL bRet = FALSE;
NTSTATUS status = 0;
HMODULE hModule = NULL;
typedef_RtlGetCompressionWorkSpaceSize RtlGetCompressionWorkSpaceSize = NULL;
typedef_RtlCompressBuffer RtlCompressBuffer = NULL;
DWORD dwWorkSpaceSize = 0, dwFragmentWorkSpaceSize = 0;
BYTE *pWorkSpace = NULL;
BYTE *pCompressData = NULL;
DWORD dwCompressDataLength = 4096;
DWORD dwFinalCompressSize = 0;
do
{
// 加载 ntdll.dll
hModule = ::LoadLibrary("ntdll.dll");
if (NULL == hModule)
{
ShowError("LoadLibrary");
break;
}
// 获取 RtlGetCompressionWorkSpaceSize 函数地址
RtlGetCompressionWorkSpaceSize = (typedef_RtlGetCompressionWorkSpaceSize)::GetProcAddress(hModule, "RtlGetCompressionWorkSpaceSize");
if (NULL == RtlGetCompressionWorkSpaceSize)
{
ShowError("GetProcAddress");
break;
}
// 获取 RtlCompressBuffer 函数地址
RtlCompressBuffer = (typedef_RtlCompressBuffer)::GetProcAddress(hModule, "RtlCompressBuffer");
if (NULL == RtlCompressBuffer)
{
ShowError("GetProcAddress");
break;
}
// 获取WorkSpqce大小
status = RtlGetCompressionWorkSpaceSize(COMPRESSION_FORMAT_LZNT1 | COMPRESSION_ENGINE_STANDARD, &dwWorkSpaceSize, &dwFragmentWorkSpaceSize);
if (0 != status)
{
break;
}
// 申请动态内存
pWorkSpace = new BYTE[dwWorkSpaceSize];
if (NULL == pWorkSpace)
{
break;
}
::RtlZeroMemory(pWorkSpace, dwWorkSpaceSize);
while (TRUE)
{
// 申请动态内存
pCompressData = new BYTE[dwCompressDataLength];
if (NULL == pCompressData)
{
break;
}
::RtlZeroMemory(pCompressData, dwCompressDataLength);
// 调用RtlCompressBuffer压缩数据
RtlCompressBuffer(COMPRESSION_FORMAT_LZNT1, pUncompressData, dwUncompressDataLength, pCompressData, dwCompressDataLength, 4096, &dwFinalCompressSize, (PVOID)pWorkSpace);
if (dwCompressDataLength < dwFinalCompressSize)
{
// 释放内存
if (pCompressData)
{
delete[]pCompressData;
pCompressData = NULL;
}
dwCompressDataLength = dwFinalCompressSize;
}
else
{
break;
}
}
// 返回
*ppCompressData = pCompressData;
*pdwCompressDataLength = dwFinalCompressSize;
bRet = TRUE;
} while (FALSE);
// 释放
if (pWorkSpace)
{
delete[]pWorkSpace;
pWorkSpace = NULL;
}
if (hModule)
{
::FreeLibrary(hModule);
}
return bRet;
}
// 数据解压缩
BOOL UncompressData(BYTE *pCompressData, DWORD dwCompressDataLength, BYTE **ppUncompressData, DWORD *pdwUncompressDataLength)
{
BOOL bRet = FALSE;
HMODULE hModule = NULL;
typedef_RtlDecompressBuffer RtlDecompressBuffer = NULL;
BYTE *pUncompressData = NULL;
DWORD dwUncompressDataLength = 4096;
DWORD dwFinalUncompressSize = 0;
do
{
// 加载 ntdll.dll
hModule = ::LoadLibrary("ntdll.dll");
if (NULL == hModule)
{
break;
}
// 获取 RtlDecompressBuffer 函数地址
RtlDecompressBuffer = (typedef_RtlDecompressBuffer)::GetProcAddress(hModule, "RtlDecompressBuffer");
if (NULL == RtlDecompressBuffer)
{
break;
}
while (TRUE)
{
// 申请动态内存
pUncompressData = new BYTE[dwUncompressDataLength];
if (NULL == pUncompressData)
{
break;
}
::RtlZeroMemory(pUncompressData, dwUncompressDataLength);
// 调用RtlCompressBuffer压缩数据
RtlDecompressBuffer(COMPRESSION_FORMAT_LZNT1, pUncompressData, dwUncompressDataLength, pCompressData, dwCompressDataLength, &dwFinalUncompressSize);
if (dwUncompressDataLength < dwFinalUncompressSize)
{
// 释放内存
if (pUncompressData)
{
delete[]pUncompressData;
pUncompressData = NULL;
}
dwUncompressDataLength = dwFinalUncompressSize;
}
else
{
break;
}
}
// 返回
*ppUncompressData = pUncompressData;
*pdwUncompressDataLength = dwFinalUncompressSize;
bRet = TRUE;
} while (FALSE);
// 释放
if (hModule)
{
::FreeLibrary(hModule);
}
return bRet;
}
int main(int argc, char *argv[])
{
DWORD i = 0;
BOOL bRet = FALSE;
char szBuffer[] = "DDDDDDDDDDGGGGGGGGGGGG";
DWORD dwBufferLength = ::lstrlen(szBuffer);
BYTE *pCompressData = NULL;
DWORD dwCompressDataLength = 0;
BYTE *pUncompressData = NULL;
DWORD dwUncompressDataLength = 0;
// 压缩数据
CompressData((BYTE *)szBuffer, dwBufferLength, &pCompressData, &dwCompressDataLength);
// 解压数据
UncompressData(pCompressData, dwCompressDataLength, &pUncompressData, &dwUncompressDataLength);
// 显示
printf("原数据为:\n");
for (i = 0; i < dwBufferLength; i++)
{
printf("%X ", szBuffer[i]);
}
printf("\n\n压缩数据为:\n");
for (i = 0; i < dwCompressDataLength; i++)
{
printf("%X ", pCompressData[i]);
}
printf("\n\n解压缩数据为:\n");
for (i = 0; i < dwUncompressDataLength; i++)
{
printf("%X ", pUncompressData[i]);
}
printf("\n");
// 释放
if (pUncompressData)
{
delete[]pUncompressData;
pUncompressData = NULL;
}
if (pCompressData)
{
delete[]pCompressData;
pCompressData = NULL;
}
system("pause");
return 0;
}
C/C++ 使用API实现数据压缩与解压缩的更多相关文章
- iOS/MAC 数据压缩与解压缩及常用算法 LZMA、ZLIB
苹果提供的常用的数据压缩算法LZMA.ZLIB.LZ4等: 这三种算法也是苹果建议的,可跨平台使用: 定义如下: /* Commonly-available encoders */ COMPRESSI ...
- 利用JAVA API函数实现数据的压缩与解压缩
综述 许多信息资料都或多或少的包含一些多余的数据.通常会导致在客户端与服务器之间,应用程序与计算机之间极大的数据传输量.最常见的解决数据存储和信息传送的方法是安装额外的存储设备和扩展现有的通讯能力 ...
- hadoop2.2编程: 数据压缩
本文主要讨论hadoop的数据压缩与解压缩代码的书写 Compressing and decompressing streams with CompressionCodec import org.ap ...
- JavaMail API 1.4.7邮件发送
下载oracle javaMail API: http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive- ...
- 【VC++技术杂谈008】使用zlib解压zip压缩文件
最近因为项目的需要,要对zip压缩文件进行批量解压.在网上查阅了相关的资料后,最终使用zlib开源库实现了该功能.本文将对zlib开源库进行简单介绍,并给出一个使用zlib开源库对zip压缩文件进行解 ...
- C/C++ 程序库
C/C++ 程序库 // --------------------------------------------- 来几个不常见但是很变态的库吧: bundle: 把几乎所有常见的压缩库封装成了一个 ...
- 转: 工作中用的C++库
转:https://www.mhftz.com/archives/42.html 个人学习C/C++的开源代码: 0.STL 1.osmium 2.leveldb 3.glog 4.redis 个人使 ...
- 网络基础 : OSI参考模型
Overview OSI规范的作用之一就是帮助在不同的主机之间传输数据. OSI模型包含7层,它们分为两组. 上面3层指定了终端中的应用程序如何彼此通信以及如何与用户交流: 下面4层指定了如何进行端到 ...
- Linux - 文件的压缩与归档
文件压缩 常用的压缩命令有 gzip.bzip2 等. gzip 命令 命令格式 gzip [ -acdfhlLnNrtvV19 ] [-S suffix] [ name ... ] 命令参数 -c ...
- c# 搭建服务端 byte[] 处理(3)
数据的传输中,为防止数据传输过程中被获取解析 造成数据的不安全,一般都会采取各类的方式对数据进行加密.压缩等操作,在客户端或服务端以相同的算法解析即可获得数据,一定程度上减小了数据在中间过程被获取数据 ...
随机推荐
- 【django drf】 阶段练习
目录 需求 settings.py views.py urls.py serializers.py permissions.py page.py authenticate.py model.py 权限 ...
- Problem 1342B - Binary Period (思维)
AC代码: #include<bits/stdc++.h> using namespace std; int main() { //freopen("in.txt", ...
- Tomcat 优雅关闭之路
本文首发于 vivo互联网技术 微信公众号 链接:https://mp.weixin.qq.com/s/ZqkmoAR4JEYr0x0Suoq7QQ作者:马运杰 本文通过阅读Tomcat启动和关闭流程 ...
- 基于 SpringBoot + Vue3.2 + Element Plus 的后台管理系统
简介 TANSCI 基于 SpringBoot + Vue3.2 + Element Plus 的后台管理系统. 包含基础模块:菜单管理.角色管理.组织管理.用户管理.字典管理.日志管理(操作日志.异 ...
- P3842-DP【黄】
想搜索到最后一层,就必得先完成前面层的搜索任务,这构成了对状态转移的启示,即当前层的DP值应该是此前层转移过来后得到的最佳值. 但这道题看数据范围应该不能用二维数组,抱着侥幸的心理我使用了动态二维数组 ...
- Proxifier 2023年11月时最新版 激活教程
前言 Proxifier 是一款功能非常强大的socks5客户端,可以让不支持通过代理服务器工作的网络程序能通过HTTPS或SOCKS代理或代理链.支持64位系统支持Xp,Vista,Win7,支持s ...
- C语言基础之理论概述
C语言介绍 C语言是一种高级程序设计语言,由贝尔实验室的Dennis Ritchie在1972年开发.C语言是结构化编程语言,支持变量.数据类型.运算符.表达式.流程控制语句和函数等基本程序设计元素. ...
- java进阶(7)--Object类-toString()/equals()/finalize()/hashCode()
一.object类介绍 object类这个老祖宗中的方法,所有子类通用,直接或间接继承. 学习常用方法即可 列表 prtected object clone() //对象克隆 ...
- nginx.conf 配置解析及常用配置
本文为博主原创,未经允许不得转载: nginx.conf 配置文件配置解析 #定义 Nginx 运行的用户和用户组.默认nginx的安装用户为 nobody user www www: #启动进程,通 ...
- Blazor开发小游戏?趁热打铁上!!!
大家好,我是沙漠尽头的狼. 网站使用Blazor重构上线一天了,用Blazor开发是真便捷,空闲时间查查gpt和github,又上线一个 正则表达式在线验证工具 和几个在线小游戏,比如 井字棋游戏.扫 ...