物以类聚,聚类算法使用最优化的算法来计算数据点之间的距离,并将它们分组到最近的簇中。

Scipy的聚类模块中,进一步分为两个聚类子模块:

  1. vq(vector quantization):提供了一种基于向量量化的聚类算法。

vq模块支持多种向量量化算法,包括K-meansGMM(高斯混合模型)和WAVG(均匀分布)。

  1. hierarchy:提供了一种基于层次聚类的聚类算法。

hierarchy模块支持多种层次聚类算法,包括wardelbowcentroid

总之,Scipy中的vqhierarchy模块都提供了一种基于最小化平方误差的聚类算法,
它们可以帮助我们快速地对大型数据集进行分组,从而更好地理解数据的分布和模式。

1. vq 聚类

vq 聚类算法的原理是将数据点映射到一组称为“超空间”的低维向量空间中,然后将它们分组到最近的簇中。

首先,我们创建一些测试数据:(创建3个类别的测试数据)

import numpy as np
import matplotlib.pyplot as plt data1 = np.random.randint(0, 30, (100, 3))
data2 = np.random.randint(30, 60, (100, 3))
data3 = np.random.randint(60, 100, (100, 3)) data = np.concatenate([data1, data2, data3]) fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(data[:, 0], data[:, 1], data[:, 2])
plt.show()


data1data2data3分布在3个区域,
每个数据集有100条数据,每条数据有3个属性

1.1. 白化数据

聚类之前,一般会对数据进行白化,所谓白化数据,是指将数据集中的每个特征或每个样本的值都统一为同一个范围。
这样做的目的是为了消除特征之间的量纲和数值大小差异,使得不同特征具有相似的重要性,从而更容易进行聚类算法。

在聚类之前对数据进行白化处理也被称为预处理阶段。

from scipy.cluster.vq import whiten

# 白化数据
normal_data = whiten(data) # 绘制白化后的数据
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(normal_data[:, 0], normal_data[:, 1], normal_data[:, 2])
plt.show()


从图中可以看出,数据的分布情况没有改变,只是数据的范围从0~100变成0.0~3.5
这就是白化的效果。

1.2. K-means

白化之后,就可以用K-meas方法来进行聚类运算了。
scipyvq模块中有2个聚类函数:kmeanskmeans2

kmeans函数最少只要传入两个参数即可:

  1. 需要聚类的数据,也就是上一步白化的数据
  2. 聚类的数目

返回值有2部分:

  1. 各个聚类的中心点
  2. 各个点距离聚类中心点的欧式距离的平均值
from scipy.cluster.vq import kmeans 

center_points, distortion = kmeans(normal_data, 3)
print(center_points)
print(distortion)
# 运行结果
[[1.632802 1.56429847 1.51635413]
[0.48357948 0.55988559 0.48842058]
[2.81305235 2.84443275 2.78072325]]
0.5675874109728244

把三个聚类点绘制在图中来看更加清楚:

fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(normal_data[:, 0],
normal_data[:, 1],
normal_data[:, 2])
ax.scatter(
center_points[:, 0],
center_points[:, 1],
center_points[:, 2],
color="r",
marker="^",
linewidths=5,
) plt.show()


图中3个红色的点就是聚类的中心点。

1.3. K-means2

kmeans2函数使用起来和kmeans类似,但是返回值有区别,
kmeans2的返回的是:

  1. 聚类的中心点坐标
  2. 每个聚类中所有点的索引
from scipy.cluster.vq import kmeans2

center_points, labels = kmeans2(normal_data, 3)
print(center_points)
print(labels)
# 运行结果
[[2.81305235 2.84443275 2.78072325]
[1.632802 1.56429847 1.51635413]
[0.48357948 0.55988559 0.48842058]]
[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
... ...
0 0 0 0]

可以看出,计算出的聚类中心点center_pointskmeans一样(只是顺序不一样),
labels0,1,2三种值,代表normal_data中每个点属于哪个分类。

kmeans2除了返回了聚类中心点,还有每个数据点属于哪个聚类的信息,
所以我们绘图时,可以将属于不同聚类的点标记不同的颜色。

fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
arr_data = [[], [], []]
for idx, nd in enumerate(normal_data):
arr_data[labels[idx]].append(nd) data = np.array(arr_data[0])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightblue')
data = np.array(arr_data[1])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightgreen')
data = np.array(arr_data[2])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightyellow') ax.scatter(
center_points[:, 0],
center_points[:, 1],
center_points[:, 2],
color="r",
marker="^",
linewidths=5,
) plt.show()

2. hierarchy 聚类

hierarchy聚类算法的步骤比较简单:

  1. 将每个样本视为一个簇
  2. 计算各个簇之间的距离,将距离最近的两个簇合并为一个簇
  3. 重复第二个步骤,直至到最后一个簇
from scipy.cluster.hierarchy import ward, fcluster, dendrogram
from scipy.spatial.distance import pdist # 计算样本数据之间的距离
# normal_data是之前白化之后的数据
dist = pdist(normal_data) # 在距离上创建Ward连接矩阵
Z = ward(dist) # 层次聚类之后的平面聚类
S = fcluster(Z, t=0.9, criterion='distance')
print(S)
# 运行结果
[20 26 23 18 18 22 18 28 21 22 28 26 27 27 20 17 23 20 26 23 17 25 20 22
... ...
5 13 3 4 2 9 9 13 13 8 11 6]

返回的S中有300个数据,和normal_data中的数据一样多,S中数值接近的点,分类越接近。

从数值看聚类结果不那么明显,scipy的层次聚类提供了一个dendrogram方法,内置了matpltlib的功能,
可以把层次聚类的结果用图形展示出来。

P = dendrogram(Z, no_labels=True)
plt.show()


从这个图可以看出每个数据分别属于哪个层次的聚类。
最底层的叶子节点就是normal_datad中的各个数据,这些数据的索引信息可以从 P 中获取。

# P是一个字典,包含聚类之后的信息
# key=ivl 是图中最底层叶子节点在 normal_data 中的索引
print(P["ivl"])
# 运行结果
['236', '269', '244', ... ... '181', '175', '156', '157']

3. 总结

聚类分析可以帮助我们发现数据集中的内在结构、模式和相似性,从而更好地理解数据。
使用Scipy库,可以帮助我们高效的完成数据的聚类分析,而不用去具体了解聚类分析算法的实现方式。

【scipy 基础】--聚类的更多相关文章

  1. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. 使用scipy进行聚类

    近期做图像的时候,突然有个idea,须要进行聚类,事实上算法非常easy,可是当时非常急.就直接使用了scipy的cluster. 使用起来事实上非常easy,可是中文的文章非常少,所以就简单的介绍一 ...

  3. scipy cluster聚类 ---Python3

    官方文档: https://docs.scipy.org/doc/scipy/reference/cluster.vq.html

  4. SciPy k均值聚类

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. python-数据处理的包Numpy,scipy,pandas,matplotlib

    一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...

  6. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  10. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 即构SDK9月迭代:外部采集、音频频谱、房间附加消息等多个模块功能上新

    即构SDK9月迭代来了,本月SDK在外部采集.音频频谱.房间附加消息等多个功能模块均有新功能上线,并且还针对K歌音乐场景下,优化了变调功能效果.以下是详细的迭代内容: LiveRoom   新增 1. ...

  2. JavaScript进阶指南: DOM与BOM操作,从初学者到专家,一步也能登天一篇文章就足够了

    DOM与BOM操作 复习链接: http://c.biancheng.net/view/9360.html 事件对象: https://www.runoob.com/jsref/dom-obj-eve ...

  3. Java原生图片Base64转码与Base64解码

    原文地址 import org.apache.commons.codec.binary.*; import java.io.*; import java.net.*; /** * 将file文件转换为 ...

  4. Lucene.Net  -全文检索引擎

    简介 Lucene.Net只是一个全文检索开发包,不是一个成型的搜索引擎,它的功能就是负责将文本数据按照某种分词算法进行切词,分词后的结果存储在索引库中,从索引库检索数据的速度灰常快 版本使用 3.0 ...

  5. Redis 主从同步原理

    一.什么是主从同步? 主从同步,就是将数据冗余备份,主库(Master)将自己库中的数据,同步给从库(Slave). 从库可以一个,也可以多个,如图所示: 二.为什么需要主从同步? Redis 虽然有 ...

  6. 论文解读(BERT-DAAT)《Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis》

    论文信息 论文标题:Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis论文作者:论文来源:2020 ACL论文地 ...

  7. Windows 环境下载、安装、使用(.Net 5.0) Redis 数据库及常见问题的解决

    〇.前言 Redis (Remote Dictionary Server 远程字典服务)是一个使用 ANSI C 编写的开源.包含多种数据结构,支持网络.基于内存.可选持久性的键值对存储数据库,是现在 ...

  8. 桌面应用打包:pyinstaller

    1 背景 在使用python开发一些小工具时,如果其他人电脑中没有python环境或者没有安装相应的第三方库,是没办法运行的,而要求对方安装又不现实,尤其是对方不是技术人员,因此如何将一个独立的pyt ...

  9. SpringBoot3集成RocketMq

    标签:RocketMq5.Dashboard: 一.简介 RocketMQ因其架构简单.业务功能丰富.具备极强可扩展性等特点被广泛应用,比如金融业务.互联网.大数据.物联网等领域的业务场景: 二.环境 ...

  10. 快手Java一面11问(附参考答案)

    现在已经到了面试招聘比较火热的时候,后续会分享一些面试真题供大家复习参考.准备面试的过程中,一定要多看面经,多自测! 今天分享的是一位贵州大学的同学分享的快手一面面经. 快手一面主要会问一些基础问题, ...