3.6 start 与 run

调用 run

public static void main(String[] args) {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug(Thread.currentThread().getName());
FileReader.read(Constants.MP4_FULL_PATH);
}
}; t1.run();
log.debug("do other things ...");
}

输出

19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...

程序仍在 main 线程运行, FileReader.read() 方法调用还是同步的.

调用 start

将上述代码的 t1.run(); 改为 t1.start();

输出

19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms

程序在 t1 线程运行, FileReader.read() 方法调用是异步

小结

  • 直接调用 run 是在主线程中执行了 run,没有启动新的线程
  • 使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码

3.7 sleep 与 yield

sleep

  • 调用 sleep 会让当前线程从 Running进入 Timed Waiting 状态(阻塞)
  • 其它线程可以使用 interrupt 方法打断正在睡眠的线程,这时 sleep 方法会抛出 InterruptedException
  • 睡眠结束后的线程未必会立刻得到执行
  • 建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性

yield

  • 调用 yield 会让当前线程从 Running 进入 Runnable就绪状态,然后调度执行其它线程
  • 具体的实现依赖于操作系统的任务调度器

线程优先级

  • 线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它
  • 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用
Runnable task1 = () -> {
int count = 0;
for (;;) {
System.out.println("---->1 " + count++);
}
};
Runnable task2 = () -> {
int count = 0;
for (;;) {
// Thread.yield();
System.out.println(" ---->2 " + count++);
}
};
Thread t1 = new Thread(task1, "t1");
Thread t2 = new Thread(task2, "t2");
// t1.setPriority(Thread.MIN_PRIORITY);
// t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();

应用: 限制对CPU的使用

sleep 实现

在没有利用 cpu 来计算时,不要让 while(true) 空转浪费 cpu,这时可以使用 yield 或 sleep 来让出 cpu 的使用权 给其他程序

while(true) {
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
  • 可以用 wait 或 条件变量达到类似的效果
  • 不同的是,后两种都需要加锁,并且需要相应的唤醒操作,一般适用于要进行同步的场景
  • sleep 适用于无需锁同步的场景
wait实现
synchronized(锁对象) {
while(条件不满足) {
try {
锁对象.wait();
} catch(InterruptedException e) {
e.printStackTrace();
}
}
// do sth...
}
条件变量实现
lock.lock();
try {
while(条件不满足) {
try {
条件变量.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// do sth...
} finally {
lock.unlock();
}

3.8 join方法详解

为什么需要 join

下面的代码执行,打印 r 是什么?

static int r = 0;
public static void main(String[] args) throws InterruptedException {
test1();
} private static void test1() throws InterruptedException {
log.debug("开始");
Thread t1 = new Thread(() -> {
log.debug("开始");
sleep(1);
log.debug("结束");
r = 10;
});
t1.start();
log.debug("结果为:{}", r);
log.debug("结束");
}

分析

  • 因为主线程和线程 t1 是并行执行的,t1 线程需要 1 秒之后才能算出 r=10
  • 而主线程一开始就要打印 r 的结果,所以只能打印出 r=0

解决方法

  • 用 sleep 行不行?为什么?
  • 用 join,加在 t1.start() 之后即可

应用之同步(案例1)

以调用方角度来讲,如果

  • 需要等待结果返回,才能继续运行就是同步
  • 不需要等待结果返回,就能继续运行就是异步

等待多个结果

问,下面代码 cost 大约多少秒?

static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test2();
}
private static void test2() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(1);
r1 = 10;
});
Thread t2 = new Thread(() -> {
sleep(2);
r2 = 20;
});
long start = System.currentTimeMillis();
t1.start();
t2.start();
t1.join();
t2.join();
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

分析如下

  • 第一个 join:等待 t1 时, t2 并没有停止, 而在运行
  • 第二个 join:1s 后, 执行到此, t2 也运行了 1s, 因此也只需再等待 1s

如果颠倒两个 join 呢?

最终都是输出

20:45:43.239 [main] c.TestJoin - r1: 10 r2: 20 cost: 2005

有时效的join

等够时间
static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test3();
}
public static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(1);
r1 = 10;
});
long start = System.currentTimeMillis();
t1.start();
// 线程执行结束会导致 join 结束
t1.join(1500);
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出

20:48:01.320 [main] c.TestJoin - r1: 10 r2: 0 cost: 1010
没等够时间
static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test3();
}
public static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(2);
r1 = 10;
});
long start = System.currentTimeMillis();
t1.start();
// 线程执行结束会导致 join 结束
t1.join(1500);
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}

输出

20:52:15.623 [main] c.TestJoin - r1: 0 r2: 0 cost: 1502

3.9 interrupt 方法详解

打断 sleep,wait,join 的线程

这几个方法都会让线程进入阻塞状态

打断 sleep 的线程, 会清空打断状态,以 sleep 为例

private static void test1() throws InterruptedException {
Thread t1 = new Thread(()->{
sleep(1);
}, "t1");
t1.start();
sleep(0.5);
t1.interrupt();
log.debug(" 打断状态: {}", t1.isInterrupted());
}

输出

java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at java.lang.Thread.sleep(Thread.java:340)
at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)
at cn.itcast.n2.util.Sleeper.sleep(Sleeper.java:8)
at cn.itcast.n4.TestInterrupt.lambda$test1$3(TestInterrupt.java:59)
at java.lang.Thread.run(Thread.java:745)
21:18:10.374 [main] c.TestInterrupt - 打断状态: false

打断正常运行的线程

private static void test2() throws InterruptedException {
Thread t2 = new Thread(()->{
while(true) {
Thread current = Thread.currentThread();
boolean interrupted = current.isInterrupted();
if(interrupted) {
log.debug(" 打断状态: {}", interrupted);
break;
}
}
}, "t2");
t2.start();
sleep(0.5);
t2.interrupt();
}

输出

20:57:37.964 [t2] c.TestInterrupt - 打断状态: true

(终止)模式之两阶段终止

Two Phase Termination

在一个线程 T1 中如何“优雅”终止线程 T2?这里的【优雅】指的是给 T2 一个料理后事的机会。

1. 错误思路
  • 使用线程对象的 stop() 方法停止线程

    • stop 方法会真正杀死线程,如果这时线程锁住了共享资源,那么当它被杀死后就再也没有机会释放锁,其它线程将永远无法获取锁
  • 使用 System.exit(int) 方法停止线程

    • 目的仅是停止一个线程,但这种做法会让整个程序都停止
2. 两阶段终止模式

利用 isInterrupted

interrupt 可以打断正在执行的线程,无论这个线程是在 sleep,wait,还是正常运行

class TPTInterrupt {
private Thread thread;
public void start(){
thread = new Thread(() -> {
while(true) {
Thread current = Thread.currentThread();
if(current.isInterrupted()) {
log.debug("料理后事");
break;
}
try {
Thread.sleep(1000);
log.debug("将结果保存");
} catch (InterruptedException e) {
current.interrupt();
}
// 执行监控操作
}
},"监控线程");
thread.start();
}
public void stop() {
thread.interrupt();
}
}

调用

TPTInterrupt t = new TPTInterrupt();
t.start(); Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:49:42.915 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:43.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:44.919 c.TwoPhaseTermination [监控线程] - 将结果保存
11:49:45.413 c.TestTwoPhaseTermination [main] - stop
11:49:45.413 c.TwoPhaseTermination [监控线程] - 料理后事
利用停止标记
// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
private Thread thread;
private volatile boolean stop = false; public void start(){
thread = new Thread(() -> {
while(true) {
//Thread current = Thread.currentThread();
if(stop) {
log.debug("料理后事");
break;
}
try {
Thread.sleep(1000);
log.debug("将结果保存");
} catch (InterruptedException e) { }
// 执行监控操作
}
},"监控线程");
thread.start();
} public void stop() {
stop = true;
thread.interrupt();
}
}

调用

TPTVolatile t = new TPTVolatile();
t.start(); Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:54:52.003 c.TPTVolatile [监控线程] - 将结果保存
11:54:53.006 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.007 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.502 c.TestTwoPhaseTermination [main] - stop
11:54:54.502 c.TPTVolatile [监控线程] - 料理后事

案例:JVM 内存监控

打断 park 线程

打断 park 线程, 不会清空打断状态

private static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
log.debug("park...");
LockSupport.park();
log.debug("unpark...");
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}, "t1");
t1.start();
sleep(0.5);
t1.interrupt();
}

输出

21:11:52.795 [t1] c.TestInterrupt - park...
21:11:53.295 [t1] c.TestInterrupt - unpark...
21:11:53.295 [t1] c.TestInterrupt - 打断状态:true

如果打断标记已经是 true, 则 park 会失效

private static void test4() {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5; i++) {
log.debug("park...");
LockSupport.park();
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}
});
t1.start();
sleep(1);
t1.interrupt();
}

输出

21:13:48.783 [Thread-0] c.TestInterrupt - park...
21:13:49.809 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.812 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true

提示

可以使用 Thread.interrupted() 清除打断状态

3.10 不推荐的方法

还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁

方法名 功能说明
stop() 停止线程运行
suspend() 挂起(暂停)线程运行
resume() 恢复线程运行

Thread类 常用方法的更多相关文章

  1. Thread类常用方法

    Thread类构造方法: 1.Thread(): 2.Thread(String name): 3.Thread(Runable r): 4.Thread(Runable r, String name ...

  2. java 多线程:Thread类常用方法:setPriority优先级、interrupt中断标记、suspend暂停与唤醒resume(已过时);daemon守护线程

    常用方法: boolean isAlive() 测试此线程是否存活. boolean isDaemon() 测试此线程是否为守护程序线程. static void sleep?(long millis ...

  3. Java基础-进程与线程之Thread类详解

    Java基础-进程与线程之Thread类详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.进程与线程的区别 简而言之:一个程序运行后至少有一个进程,一个进程中可以包含多个线程 ...

  4. Java并发基础--Thread类

    一.Thread类的构成 Thread类实现Runnable接口.部分源码如下: 二.Thread类常用方法 1.currentThread()方法 currentThread()方法可以返回代码段正 ...

  5. 并发编程之 Thread 类过期方法和常用方法

    前言 在 Java 刚诞生时,Thread 类就已经有了很多方法,但这些方法由于一些原因(有一些明显的bug或者设计不合理)有些已经废弃了,但是他们的方法名却是非常的好,真的是浪费.我们在进行并发必编 ...

  6. 创建多线程的方式&Thread类的常用方法

    创建多线程的第一种方式:继承java.lang.Thread类 注意:1.一个线程只能执行一次start() 2.不能通过Thread实现类对象的 run()去启动一个线程 3.增加加一个线程,需要新 ...

  7. Thread类的常用方法----多线程基础练习

    创建多线程程序的第一种方式----继承Thread类 常用API 构造方法 public Thread() :分配一个新的线程对象. public Thread(String name) :分配一个指 ...

  8. Thread类的常用方法_获取线程名称的方法和设置线程名称的方法

    Thread类的常用方法 获取线程的名称: 1.使用Thread类中的方法getName() String getName() 返回该线程的名称 2.可以先获取到当前正在执行的线程,使用线程中的方法g ...

  9. Thread类的常用方法_获取线程名称的方法和Thread类的常用方法_设置线程名称的方法

    构造方法: public Thread();分配一个新的线程对象 public Thread(String name);分配一个指定名字的新的线程对象 public Thread(Runnable t ...

  10. Thread类的常用方法_sleep和创建多线程程序的第二种方式_实现Runnable接口

    sleep方法是在Thread类中的一个静态方法,当一个线程调用了sleep方法,被调用的那个线程就会暂时的让出指定时间的CPU执行权,在这段时间也不会参与CPU的调度,当时间到了之后,就会重新回到就 ...

随机推荐

  1. Java相关小知识_6_15

    实体完整性要求每个表都有唯一标识符,每一个表中的主键字段不能为空或者重复的值. 参照完整性要求关系中不允许引用不存在的实体.设定相应的更新删除插入规则来更新参考表. Java语言使用的是Unicode ...

  2. Codeforces Round #875 (Div. 2) A-D

    比赛链接 A 代码 #include <bits/stdc++.h> using namespace std; using ll = long long; bool solve() { i ...

  3. Mysql获取时间戳的一些处理

    前情提要: 老板需要一个统计今日新增用户的功能 我的想法是统计24小时内新增用户的功能 直接去问AI 我明确指出了时间戳 但是AI给出的答案却差了口气 这就是老板给我工资而不是给微软工资的地方 DAT ...

  4. 关于DVWA靶场高难度命令执行的代码审计

    需要的环境:dvwa 使用的工具:PHP手册 high难度源代码: <?php if( isset( $_POST[ 'Submit' ] ) ) { // Get input $target ...

  5. WebSSH之录屏安全审计(三)

    第一篇:Gin+Xterm.js实现WebSSH远程Kubernetes Pod(一) 第二篇:WebSSH远程管理Linux服务器.Web终端窗口自适应(二) 支持用户名密码认证 支持SSH密钥认证 ...

  6. #Powerbi 1分钟学会,设置有密码保护的powerbi报告

    目前,有一些朋友和笔者一样,公司暂时没有部署powerbi服务器,但是有时也需要使用powerbi共享一些看板. 如果直接将制作好的报告直接发布在公网上,又存在一定的风险,即便可能只是公布1天. 那么 ...

  7. PLE-实践小结-2308-cnblogs

    某场景介绍 前状:三模型,权重融合 解决问题:融合目标行为,充分利用样本信息,节省资源开销. 当前效果 主场景人均真实曝光+0.26%,不显著:子场景人均真实曝光+0.35%,不显著 千曝互动+2.6 ...

  8. 需求太多处理不过来?MoSCoW模型帮你

    一.MoSCoW模型是什么 MoSCoW模型是在项目管理.软件开发中使用的一种排序优先级的方法,以便开发人员.产品经理.客户对每个需求交付的重要性达成共识. MoSCoW是一个首字母缩略词,代表: M ...

  9. oracle数据备份和还原

    前言 用户:userzs 密码:passzs IP和端口:192.168.0.10:1521/orcl oracle版本:11和12 oracle自带exp和expdp程序用于数据导出备份,imp和i ...

  10. jQuery Mobile 使用中的问题

    1.点击data-role="page"内的页面,会自动隐藏头部栏和尾部栏. 在data-role="header"或data-role="foote ...