The OCaml Language Cheatsheets

OCaml v.4.08.1

Syntax

Implementations are in .ml files, interfaces are in .mli files.

Comments can be nested, between delimiters (*...*)

Integers: 123, 1_000, 0x4533, 0o773, 0b1010101

Chars: 'a', '\255', '\xFF', '\n'

Floats: 0.1, -1.234e-34

Data Types

unit:             (* void, takes only one value: () *)
int: (* integer of either 31 or 63 bits, like 42 *)
int32: (* 32 bits Integer, like 42l *)
int64: (* 64 bits Integer, like 42L *)
float: (* double precision float, like 1.0 *)
bool: (* boolean, takes two values: true or false *)
char: (* simple ASCII characters, like 'A' *)
string: (* strings, like "Hello" or foo|Hello|foo *)
bytes: (* mutable string of chars *)
'a list : (* lists, like head :: tail or [1;2;3] *)
'a array: (* arrays, like [|1;2;3|] *)
t1 * ... * tn: (* tuples, like (1, "foo", 'b') *)

Constructed Types

type record =               (* new record type *)
{ field1 : bool; (* immutable field *)
mutable field2 : int; } (* mutable field *) type enum = (* new variant type *)
| Constant (* Constant constructor *)
| Param of string (* Constructor with arg*)
| Pair of string * int (* Constructor with args *)
| Gadt : int -> enum (* GADT constructor *)
| Inlined of { x : int } (* Inline record *)

Constructed Values

let r = { field1 = true; field2 = 3; }
let r' = { r with field1 = false }
r.field2 <- r.field2 + 1;
let c = Constant
let c = Param "foo"
let c = Pair ("bar",3)
let c = Gadt 0
let c = Inlined { x = 3 }

References, Strings and Arrays

let x = ref 3   (* integer reference (mutable) *)
x := 4 (* reference assignation *)
print_int !x; (* reference access *)
s.[0] (* string char access *)
t.(0) (* array element access *)
t.(0) <- x (* array element modification *)

Imports - Namespaces

open Unix               (* global open *)
let open Unix in expr (* local open *)
Unix.(expr) (* local open *)

Functions

let f x = expr                (* function with one arg *)
let rec f x = expr (* recursive function, apply: f x *)
let f x y = expr (* with two args, apply: f x y *)
let f (x,y) = expr (* with a pair as arg, apply: f (x,y) *)
List.iter (fun x -> expr) (* anonymous function *)
let f = function None -> act (* function definition *)
| Some x -> act (* function definition [by cases] *)
(* apply: f (Some x) *)
let f ~str ~len = expr (* with labeled args *)
(* apply: f ~str:s ~len:10 *)
(* apply: (for ~str:str): f ~str ~len *)
let f ?len ~str = expr (* with optional arg (option) *)
let f ?(len=0) ~str = expr (* optional arg default *)
(* apply (with omitted arg): f ~str:s *)
(* apply (with commuting): f ~str:s ~len:12 *)
(* apply (len: int option): f ?len ~str:s *)
(* apply (explicitly omitted): f ?len:None ~str:s *)
let f (x : int) = expr (* arg has constrainted type *)
let f : 'a 'b. 'a*'b -> 'a (* function with constrainted *)
= fun (x,y) -> x (* polymorphic type *)

Modules

module M = struct .. end            (* module definition *)
module M: sig .. end= struct .. end (* module and signature *)
module M = Unix (* module renaming *)
include M (* include items from *)
module type Sg = sig .. end (* signature definition *)
module type Sg = module type of M (* signature of module *)
let module M = struct .. end in .. (* local module *)
let m = (module M : Sg) (* to 1st-class module *)
module M = (val m : Sg) (* from 1st-class module *)
module Make(S: Sg) = struct .. end (* functor *)
module M = Make(M') (* functor application *)

Module type items: val, external, type, exception, module, open, include, class

Pattern-matching

match expr with
| pattern -> action
| pattern when guard -> action (* conditional case *)
| _ -> action (* default case *)
Patterns:
| Pair (x,y) -> (* variant pattern *)
| { field = 3; _ } -> (* record pattern *)
| head :: tail -> (* list pattern *)
| [1;2;x] -> (* list pattern *)
| (Some x) as y -> (* with extra binding *)
| (1,x) | (x,0) -> (* or-pattern *)
| exception exn -> (* try&match *)

Conditionals

Do NOT use on closures

x = y           (* (Structural) Polymorphic Equality *)
x == y (* (Physical) Polymorphic Inequality *)
x <> y (* (Structural) Polymorphic Equality *)
x != y (* (Physical) Polymorphic Inequality *)
compare x y (* negative, when x < y *)
compare x y (* 0, when x = y *)
compare x y (* positive, when x > y *)

Other Polymorphic Comparisons: >, >=, <, <=

Loops

while cond do ... done;
for var = min_value to max_value do ... done;
for var = max_value downto min_value do ... done;

Exceptions

exception MyExn                 (* new exception *)
exception MyExn of t * t' (* same with arguments *)
exception MyFail = Failure (* rename exception with args *)
raise MyExn (* raise an exception *)
raise (MyExn (args)) (* raise with args *)
try expr (* catch MyExn *)
with MyExn -> ... (* if raised in expr *)

Objects and Classes

class virtual foo x =           (* virtual class with arg *)
let y = x+2 in (* init before object creation *)
object (self: 'a) (* object with self reference *)
val mutable variable = x (* mutable instance variable *)
method get = variable (* accessor *)
method set z =
variable <- z+y (* mutator *)
method virtual copy : 'a (* virtual method *)
initializer (* init after object creation *)
self#set (self#get+1)
end class bar = (* non-virtual class *)
let var = 42 in (* class variable *)
fun z -> object (* constructor argument *)
inherit foo z as super (* inheritance and ancestor reference *)
method! set y = (* method explicitly overridden *)
super#set (y+4) (* access to ancestor *)
method copy = {< x = 5 >} (* copy with change *)
end
let obj = new bar 3 (* new object *)
obj#set 4; obj#get (* method invocation *)
let obj = object .. end (* immediate object *)

Polymorphic variants

type t = [ `A | `B of int ]       (* closed variant *)
type u = [ `A | `C of float ]
type v = [ t | u | ] (* union of variants *)
let f : [< t ] -> int = function (* argument must be a subtype of t *)
| `A -> 0 | `B n -> n
let f : [> t ] -> int = function (* t is subtype of the argument *)
|`A -> 0 | `B n -> n | _ -> 1

Reference

The OCaml Language Cheatsheets的更多相关文章

  1. OCaml Language Sucks

    OCaml Language Sucks OCaml Language Sucks

  2. Github上的1000多本免费电子书重磅来袭!

    Github上的1000多本免费电子书重磅来袭!   以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...

  3. Github 的一个免费编程书籍列表

    Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...

  4. [转]Keyword Reference (F#)

    Visual F# Development Portal http://msdn.microsoft.com/en-us/library/vstudio/ff730280.aspx 本文转自:http ...

  5. gentoo use-flag 全局标识 大全 (官方搬运) 英文 适用funtoo

    连接 https://www.gentoo.org/support/use-flags/ 提示 ctrl+F 可在页面查找 搬运 Global USE flags FlagDescription 3d ...

  6. function Language

    什么是函数式语言: 函数式语言(functional language)一类程序设计语言.是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型.这种语言具有较强的组织数据 ...

  7. Function program language

    历史 Lambda演算为描述函数及其评估提供了理论框架.它是一种数学抽象而不是编程语言 - 但它构成了几乎所有当前函数式编程语言的基础.等效的理论公式,组合逻辑,通常被认为比lambda演算更抽象,并 ...

  8. Functional Language

    1.What is functional language? 函数式语言(functional language)一类程序设计语言,是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定 ...

  9. 函数式编程语言(functional language)

    内容根据百度词条整理! 转载请声明来源:https://baike.baidu.com/item/%E5%87%BD%E6%95%B0%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8 ...

  10. 函数式编程语言(Fuction Program Language)

    一.什么是函数式编程语言 函数式编程语言(functional progarm language)一类程序设计语言,是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型. ...

随机推荐

  1. [转帖]陈巍谈芯:NLP里比BERT更优秀的XLNet长什么样?

    https://zhuanlan.zhihu.com/p/447836322 ​ 目录 收起 一.XLNet的优势 1)独得AR与AE两大绝学 2)集成了Tansformer-XL 二.XLNet的结 ...

  2. TCP内核参数与Nginx配置的简单测试

    背景 昨天晚上整理了下几个TCP内核的参数. 学习到了一点内核参数的影响. 但是因为时间比较晚了没有继续钻研与nginx的关系 今天想着继续研究一下TCP的部分参数与nginx的关系 每个系统都不一样 ...

  3. Ant Design Vue数字输入框InputNumber 有值但是验证却不能够通过

    InputNumber 有值但是验证却不能够通过 今天遇见这样一个问题,InputNumber 输入框中有值 但是却却提示验证不能够通过 后来经过分析,怀疑是数据类型不正确, 后面经过验证,果然是数据 ...

  4. Ant Design Vue 单文件上传Upload

    单文件上传 <a-upload name="file" :beforeUpload="beforeUpload" :multiple="fals ...

  5. VictoriaMetrics 1.80版本中值得关注的新特性

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 change log请看:https://github.c ...

  6. Windows 核心编程笔记 [2] 字符串

    1. ANSI 和 Unicode Windows 中涉及字符串的函数有两个版本 1)ANSI版本的函数会把字符串转换为Unicode形式,再从内部调用函数的Unicode版本 2)Unicode版本 ...

  7. PaddleHub--{超参优化AutoDL Finetuner}【二】

     相关文章: 基础知识介绍: [一]ERNIE:飞桨开源开发套件,入门学习,看看行业顶尖持续学习语义理解框架,如何取得世界多个实战的SOTA效果?_汀.的博客-CSDN博客_ernie模型 百度飞桨: ...

  8. 特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】

    特定领域知识图谱融合方案:文本匹配算法之预训练模型SimBert.ERNIE-Gram 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系.有很多应用场景:如信息检索.问 ...

  9. 6.5 Windows驱动开发:内核枚举PspCidTable句柄表

    在 Windows 操作系统内核中,PspCidTable 通常是与进程(Process)管理相关的数据结构之一.它与进程的标识和管理有关,每个进程都有一个唯一的标识符,称为进程 ID(PID).与之 ...

  10. MySQL 权限与备份管理(精简笔记)

    MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RD ...