What is an intuitive explanation of the relation between PCA and SVD?

What is an intuitive explanation of the relation between PCA and SVD?

 
3 Answers

Mike Tamir, CSO - GalvanizeU accredited Masters program creating top tier Data Scientists...

5.2k Views • Upvoted by Ricky Kwok, Ph.D. in Applied Math from UC Davis
 
There is a very direct mathematical relation between SVD (Singular Value Decomposition) and PCA (Principal Component Analysis) - see below.  For this reason, the two algorithms deliver essentially the same result: a set of "new axes" constructed from linear combinations of the original the feature space axes in which the dataset is plotted.  These “new axes” are useful because they systematically break down the variance in the data points (how widely the data points are distributed) based on each direction's contribution to the variance in the data:



The result of this process is a ranked list of "directions" in the feature space ordered from most variance to least.  The directions along which there is greatest variance are referred to as the "principal components" (of variation in the data) and the common wisdom is that by focusing on the way the data is distributed along these dimensions exclusively, one can capture most of the information represented in in the original feature space without having to deal with such a high number of dimensions which can be of great benefit in statistical modeling and Data Science applications (see: When and where do we use SVD?).

What is the Formal Relation between SVD and PCA?
Let's let the matrix M be our data matrix where the m rows represents our data points and and the n columns represents the features of the data point.  The data may already have been mean centered and normalized by the standard deviations column-wise (most off-the-shelf implementations provide these options).

SVD: Because in most cases a data matrix M will not have exactly the same number of data points as features (i.e. m≠n) the matrix M will not be a square matrix and a diagonalization of the from M=UΣUT where U is an m×m orthogonal matrix of the eigenvectors of M and Σ is the diagonal m×m matrix of the eigenvalues of M will not exist.  However, in cases where n≠m, an analogue of this decomposition is possible and M can be factored as follows M=UΣVT, where 

  1. U is an m×m orthogonal matrix of the the "left singular-vectors" of M.
  2. V is an n×n orthogonal matrix of the the "right singular-vectors" of M.
  3. And, Σ is an m×n matrix with non-zero entries Σi,i referred to as the  "singular-values" of M.
  • Note, u⃗ , v⃗ , and σ form a left singular-vector, right singular-vector, and singular-value triple for a given matrix M if they satisfy the following equations:
  • Mv⃗ =σu⃗  and
  • MTu⃗ =σv⃗

PCA: PCA sidesteps the problem of M not being diagonalizable by working directly with the n×n "covariance matrix" MTM.  Because MTM is symmetric it is guaranteed to be diagonalizable.  So PCA works by finding the eigenvectors of the covariance matrix and ranking them by their respective eigenvalues.  The eigenvectors with the greatest eigenvalues are the Principal Components of the data matrix.

Now, a little bit of matrix algebra can be done to show that the Principal Components of a PCA diagonalization of the covariance matrix MTM are the same left-singular vectors that are found through SVD (i.e. the columns of matrix V) - the same as the principal components found through PCA:

From SVD we have M=UΣVT so...

  • MTM=(UΣVT)T(UΣVT)
  • MTM=(VΣTUT)(UΣVT)
  • but since U is orthogonal UTU=I

so

  • MTM=VΣ2VT

where  Σ2 is an n×n diagonal matrix with the diagonal elements Σ2i,i from the matrix Σ.  So the matrix of eigenvectors V in PCA are the same as the singular vectors from SVD, and the eigenvalues generated in PCA are just the squares of the singular values from SVD.

So is it ever better to use SVD over PCA?
Yes. While formally both solutions can be used to calculate the same principal components and their corresponding eigen/singular values, the extra step of calculating the covariance matrix MTM can lead to numerical rounding errors when calculating the eigenvalues/vectors.

  

David Beniaguev

486 Views
 
I would like to refine two points that I think are important:

I'll be assuming your data matrix is an m×n matrix that is organized such that rows are data samples (m samples), and columns are features (d features).

The first point is that SVD preforms low rank matrix approximation.
Your input to SVD is a number k (that is smaller than m or d), and the SVD procedure will return a set of k vectors of d dimensions (can be organized in a k×d matrix), and a set of k coefficients for each data sample (there are m data samples, so it can be organized in a m×k matrix), such that for each sample, the linear combination of it's k coefficients multiplied by the k vectors best reconstructs that data sample (in the euclidean distance sense). and this is true for all data samples. 
So in a sense, the SVD procedure finds the optimum k vectors that together span a subspace in which most of the data samples lie in (up to a small reconstruction error).

PCA on the other hand is:
1) subtract the mean sample from each row of the data matrix.
2) preform SVD on the resulting matrix.

So, the second point is that PCA is giving you as output the subspace thatspans the deviations from the mean data sample, and SVD provides you with a subspace that spans the data samples themselves (or, you can view this as a subspace that spans the deviations from zero).

Note that these two subspaces are usually NOT the same, and will be the same only if the mean data sample is zero.

In order to understand a little better why they are not the same, let's think of a data set where all features values for all data samples are in the range 999-1001, and each feature's mean is 1000.

From the SVD point of view, the main way in which these sample deviate from zero are along the vector (1,1,1,...,1). 
From the PCA point of view, on the other hand, the main way in which these data samples deviate from the mean data sample is dependent on the precise data distributions around the mean data sample...

In short, we can think of SVD as "something that compactly summarizes the main ways in which my data is deviating from zero" and PCA as "something that compactly summarizes the main ways in which my data is deviating from the mean data sample".

  

Tigran Ishkhanov

1.3k Views
 
PCA is a statistical technique in which SVD is used as a low level linear algebra algorithm. One can apply SVD to any matrix C. In PCA this matrix C arises from the data and has a statistical meaning - the element c_ij is a covariance between i-th and j-th coordinates of your dataset after mean-normalization.

  
 
 
Related Questions

What is an intuitive explanation of the relation between PCA and SVD?的更多相关文章

  1. False Discovery Rate, a intuitive explanation

    [转载请注明出处]http://www.cnblogs.com/mashiqi Today let's talk about a intuitive explanation of Benjamini- ...

  2. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  3. An Intuitive Explanation of Fourier Theory

    Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...

  4. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  5. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  6. 从 Quora 的 187 个问题中学习机器学习和NLP

    从 Quora 的 187 个问题中学习机器学习和NLP 原创 2017年12月18日 20:41:19 作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai ...

  7. PCA,SVD

    PCA的数学原理 https://www.zhihu.com/question/34143886/answer/196294308 奇异值分解的揭秘(二):降维与奇异向量的意义 奇异值分解的揭秘(一) ...

  8. Goldstone's theorem(转载)

    Goldstone's theorem是凝聚态物理中的重要定理之一.简单来说,定理指出:每个自发对称破缺都对应一个无质量的玻色子(准粒子),或者说一个zero mode. 看过文章后,我个人理解这其实 ...

  9. Why one-norm is an agreeable alternative for zero-norm?

    [转载请注明出处]http://www.cnblogs.com/mashiqi Today I try to give a brief inspection on why we always choo ...

随机推荐

  1. 个人作业4——alpha阶段个人总结(201521123003 董美凤)

    一.个人总结 在alpha 结束之后, 每位同学写一篇个人博客, 总结自己的alpha 过程: 请用自我评价表:http://www.cnblogs.com/xinz/p/3852177.html 有 ...

  2. XMind2TestCase:一个高效测试用例设计的解决方案!

    一.背景 软件测试过程中,最重要.最核心就是测试用例的设计,也是测试童鞋.测试团队日常投入最多时间的工作内容之一. 然而,传统的测试用例设计过程有很多痛点: 1.使用Excel表格进行测试用例设计,虽 ...

  3. 聚合函数count里面加条件

    聚合函数中如果想汇总某一类数据,可以在括号中增加条件: sum(case when 字段>0 then 1 else 0 end) as 字段 *注意:count(case when 字段> ...

  4. Python基础【3】:Python中的深浅拷贝解析

    深浅拷贝 在研究Python的深浅拷贝区别前需要先弄清楚以下的一些基础概念: 变量--引用--对象(可变对象,不可变对象) 切片(序列化对象)--拷贝(深拷贝,浅拷贝) 我是铺垫~ 一.[变量--引用 ...

  5. Android Studio系列教程

    Android Studio系列教程 Android Studio系列教程一 —- 下载与安装 Android Studio系列教程二 —- 基本设置与运行 Android Studio系列教程三 — ...

  6. Linux进程调度策略的发展和演变(转)

    转发:http://blog.csdn.net/gatieme/article/details/51701149  1 前言 1.1 进程调度 内存中保存了对每个进程的唯一描述, 并通过若干结构与其他 ...

  7. hdu6447 YJJ's Salesman

    这个题意和数据范围一看就是离散化之后树状数组优化DP.给的"从左下方走上去才能拿到收益"的性质其实可以当成"必须从横纵坐标严格比某个点小的地方转移过来".1A了 ...

  8. Win10系统 安装Anaconda+TensorFlow+Keras

    小白一枚,安装过程走了很多坑,前前后后安装了好几天,因此记录一下. 一.安装anaconda 官方下载地址:https://repo.continuum.io/archive/ 选项相应的版本安装,我 ...

  9. 测试人员如何"提问"

    本文打算谈谈QA如何高质量的“提问”   写这些的初衷其实比较简单,作为一个测试老鸟,加入了一些很有质量的测试圈子,也在不同的公司带过不少新人,常常会碰到低效率的“提问”,主要表现如下:   1.问题 ...

  10. hihocoder1639 图书馆 [数学]

    已知数组a[]及其和sum, 求sum! / (a1!a2!...an!) 的个位数的值. 求某数的逆元表写成了求某数阶乘的逆元表,故一直没找到错误. P 是质数的幂B 表示质数,P 表示模数,cal ...