UT-Austin大学在Image search and large-scale retrieval方面的一系列papers
Attribute Pivots for Guiding Relevance Feedback in Image Search. A. Kovashka and K. Grauman. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013. [pdf] [patent pending]
Attribute
Adaptation for Personalized Image Search. A. Kovashka and K. Grauman.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Sydney, Australia, December 2013. [pdf]
Implied
Feedback: Learning Nuances of User Behavior in Image Search. D. Parikh
and K. Grauman. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Sydney, Australia, December 2013. [pdf]
WhittleSearch: Image Search with Relative Attribute Feedback. A. Kovashka, D. Parikh, and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012. [pdf] [supp] [patent pending]
Learning Binary Hash Codes for Large-Scale Image Search. K. Grauman and R. Fergus. Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]
Efficient Region Search for Object Detection. S. Vijayanarasimhan and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, June 2011. [pdf]
Hashing for Scalable Image Search. B. Kulis and K. Grauman. In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Kyoto, Japan, October, 2009. [pdf]
Kernelized Locality-Sensitive Hashing. B. Kulis and K. Grauman. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),Vol. 34, No. 6, June 2012. [link]
Learning Binary Hash Codes for Large-Scale Image Search. K. Grauman and R. Fergus. Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]
Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning. P. Jain, S. Vijayanarasimhan, and K. Grauman. In
Advances in Neural Information Processing Systems (NIPS), Vancouver,
Canada, December 2010. [pdf]
Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning. S. Vijayanarasimhan, P. Jain, and K. Grauman.
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Volume
36, No. 2, pp. 276-288, February 2014.
Fast
Similarity Search for Learned Metrics. B. Kulis, P. Jain, and K.
Grauman. In IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), Vol. 31, No. 12, December, 2009. [link]
Accounting
for the Relative Importance of Objects in Image Retrieval. S. J. Hwang
and K. Grauman. In Proceedings of the British Machine Vision
Conference (BMVC), Aberystwyth, UK, September 2010. (Oral) [pdf]
Learning
the Relative Importance of Objects from Tagged Images for Retrieval and
Cross-Modal Search. S. J. Hwang and K. Grauman. International Journal
of Computer Vision (IJCV), published online October 2011. [link]
Efficiently Searching for Similar Images. K. Grauman. Invited article in the Communications of the ACM, 2009. [pdf]
Online
Metric Learning and Fast Similarity Search. P. Jain, B. Kulis,
I. Dhillon, and K. Grauman. In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2008. (Oral) [pdf]
Fast
Image Search for Learned Metrics. P. Jain, B. Kulis, and K.
Grauman. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Anchorage, Alaska, June 2008. (Oral) [Best
Student Paper Award] [pdf]
Pyramid
Match Hashing: Sub-Linear Time Indexing Over Partial
Correspondences. K. Grauman and T. Darrell. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Minneapolis, MN, June 2007. [pdf]
A Picture is Worth a Thousand Keywords: Image-Based Object Search on a Mobile Platform. T. Yeh, K. Grauman, K. Tollmar, and T. Darrell. In CHI 2005, Conference on Human Factors in Computing Systems, Portland, OR, April 2005. [pdf]
from: http://www.cs.utexas.edu/~grauman/research/pubs-by-topic.html#Fast_similarity_search_and_image
UT-Austin大学在Image search and large-scale retrieval方面的一系列papers的更多相关文章
- Subgraph Search Over Large Graph Database
Subgraph Search Over Large Graph Database Problem Definition Given a graph database and a query grap ...
- Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 快速高分辨率图像的立体匹配方法Effective large scale stereo matching
<Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
- Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...
- Lessons learned developing a practical large scale machine learning system
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- [C12] 大规模机器学习(Large Scale Machine Learning)
大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...
随机推荐
- 007 Ajax中的购物车
1.大纲设计 2.shopingCartItem.java package beans; public class shopingCartItem { private String bookname; ...
- 一台Windows下配置多个Tomcat服务器
上一篇博客<Windows下配置Tomcat服务器>讲了,如何在一台Windows机器上配置一个Tomcat服务器.这篇介绍一下如何在一台Windows机器上配置多个Tomcat. 第一步 ...
- <泛> C++3D数学库设计详解 向量篇
// 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:http://www.cnblogs.com/lv_anchoret/ Preface 为了支持光线追踪的学习 ...
- NetCore+Dapper WebApi架构搭建(四):仓储的依赖注入
上一节我们讲到实体,仓储接口和仓储接口的实现需要遵循约定的命名规范,不仅是规范,而且为了依赖注入,现在我们实现仓储的依赖注入 在NetCore WebApi项目中新添加一个文件夹(Unit),当然你也 ...
- luoguP4555 [国家集训队]最长双回文串 manacher算法
不算很难的一道题吧.... 很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度 分别记为$L[i]$和$R[i]$ 由于求$R[i]$相当于把$L[i ...
- 【10.26校内测试】【状压?DP】【最小生成树?搜索?】
Solution 据说正解DP30行??? 然后写了100行的状压DP?? 疯狂特判,一算极限时间复杂度过不了aaa!! 然而还是过了....QAQ 所以我定的状态是待转移的位置的前三位,用6位二进制 ...
- 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1057 Solved: 318[Submit][Status][Discuss] ...
- bzoj 5055: 膜法师 -- 树状数组
5055: 膜法师 Time Limit: 10 Sec Memory Limit: 128 MB Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇 ...
- hdoj 1002 A + B Problem II 高精度 java
A + B Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- python 爬虫学习<将某一页的所有图片下载下来>
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材. 我们最常规的做法就是通过鼠标右键,选择另存为.但有些图片鼠标右键的 ...