WhittleSearch: Interactive Image Search with Relative Attribute Feedback.  A. Kovashka, D. Parikh, and K. Grauman.  International Journal on Computer Vision (IJCV), Volume 115, Issue 2, pp 185-210, November 2015.  [link]  [arxiv]

Attribute Pivots for Guiding Relevance Feedback in Image Search.  A. Kovashka and K. Grauman.  In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf] [patent pending]

Attribute
Adaptation for Personalized Image Search.  A. Kovashka and K. Grauman.
 In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Sydney, Australia, December 2013.  [pdf]

Implied
Feedback: Learning Nuances of User Behavior in Image Search.  D. Parikh
and K. Grauman.  In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf]

WhittleSearch: Image Search with Relative Attribute Feedback. A. Kovashka, D. Parikh, and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012.  [pdf]  [supp]  [patent pending]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]
 
Efficient Region Search for Object Detection.  S. Vijayanarasimhan and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, June 2011.  [pdf]

Kernelized Locality-Sensitive
Hashing for Scalable Image Search.  B. Kulis and K. Grauman.  In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Kyoto, Japan, October, 2009. [pdf]

Kernelized Locality-Sensitive Hashing.  B. Kulis and K. Grauman.  IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),Vol. 34, No. 6, June 2012.  [link]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  P. Jain, S. Vijayanarasimhan, and K. Grauman.  In
Advances in Neural Information Processing Systems (NIPS), Vancouver,
Canada, December 2010.  [pdf]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  S. Vijayanarasimhan, P. Jain, and K. Grauman. 
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Volume
36, No. 2, pp. 276-288, February 2014.

Fast
Similarity Search for Learned Metrics.   B. Kulis, P. Jain, and K.
Grauman.   In IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), Vol. 31, No. 12, December, 2009. [link]

Accounting
for the Relative Importance of Objects in Image Retrieval.  S. J. Hwang
and K. Grauman.  In Proceedings of the British Machine Vision
Conference (BMVC), Aberystwyth, UK, September 2010. (Oral) [pdf]

Learning
the Relative Importance of Objects from Tagged Images for Retrieval and
Cross-Modal Search.  S. J. Hwang and K. Grauman.  International Journal
of Computer Vision (IJCV), published online October 2011.  [link]

Efficiently Searching for Similar Images.  K. Grauman.  Invited article in the Communications of the ACM, 2009.  [pdf]

Online
Metric Learning and Fast Similarity Search.  P. Jain, B. Kulis,
I. Dhillon, and K. Grauman.  In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2008.  (Oral) [pdf]

Fast
Image Search for Learned Metrics.  P. Jain, B. Kulis, and K.
Grauman.  In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Anchorage, Alaska, June 2008.  (Oral) [Best
Student Paper Award]    [pdf]

Pyramid
Match Hashing: Sub-Linear Time Indexing Over Partial
Correspondences.  K. Grauman and T. Darrell.  In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Minneapolis, MN, June 2007.  [pdf]

A Picture is Worth a Thousand Keywords: Image-Based Object Search on a Mobile Platform.  T. Yeh, K. Grauman, K. Tollmar, and T. Darrell.  In CHI 2005, Conference on Human Factors in Computing Systems, Portland, OR, April 2005.  [pdf]

from: http://www.cs.utexas.edu/~grauman/research/pubs-by-topic.html#Fast_similarity_search_and_image

UT-Austin大学在Image search and large-scale retrieval方面的一系列papers的更多相关文章

  1. Subgraph Search Over Large Graph Database

    Subgraph Search Over Large Graph Database Problem Definition Given a graph database and a query grap ...

  2. Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  4. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  5. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  6. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  7. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  9. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

随机推荐

  1. Web Api之Cors跨域以及其他跨域方式(三)

    我们知道ajax不能跨域访问,但是有时我们确实需要跨域访问获取数据,所以JSONP就此诞生了,其本质使用的是Script标签,除JSONP以外还有另外实现跨域方式 一.手动实现JSONP跨域 1.首先 ...

  2. USACO 6.1 Postal Vans(一道神奇的dp)

    Postal Vans ACM South Pacific Region -- 2003 Tiring of their idyllic fields, the cows have moved to ...

  3. 基于 Struts2 的文件下载

    介于上篇我们讲述了基于 Struts2 的单文件和多文件上传,这篇我们来聊一聊基于 Struts2 的文件下载. 1.导 jar 包 commons-io-2.0.1.jar struts2-core ...

  4. 2018年全国多校算法寒假训练营练习比赛(第一场)J - 闯关的lulu

    链接:https://www.nowcoder.com/acm/contest/67/J来源:牛客网 题目描述 勇者lulu某天进入了一个高度10,000,000层的闯关塔,在塔里每到一层楼,他都会获 ...

  5. JDK源码分析(二)——LinkedList

    目录 LinkedList LinkedList继承结构 LinkedList内部类Node LinkedList成员属性 LinkedList构造方法 重要方法 Deque方法的实现 遍历 总结 L ...

  6. [leetcode DP]62.Unique Paths

    判断一个物体从左上角到右下角有多少种走法 class Solution(object): def uniquePaths(self, m, n): flag = [[1 for j in range( ...

  7. 复杂密码生成工具apg

    复杂密码生成工具apg   密码是身份认证的重要方式.由于密码爆破方式的存在,弱密码非常不安全.为了构建复杂密码,Kali Linux预置了一个复杂密码生成工具apg.该工具可以提供可读密码和随机字符 ...

  8. 解决在ubuntu环境下, sublime不能输入中文的问题

    sublime text很好用,但是ubuntu下不能输入中文,这是一个很大的问题.网上已经有很多方法,这里将我自己使用的方法记录总结一下 首先,将你的操作系统升级到最新版: sudo apt-get ...

  9. 线性表之顺序栈C++实现

    线性表之顺序栈 栈是限定仅在表尾(栈顶)进行插入删除操作的线性表,FILO:先进后出 一.顺序栈的头文件:SeqStack.h //顺序栈头文件 #include<iostream> us ...

  10. CodeForces1070A Find a Number 图论

    令状态$f(i, j)$表示模$d$为$i$,和为$j$时的最小数 可以通过$bfs$来转移 然而就没了... 复杂度$O(10ds)$ #include <queue> #include ...