WhittleSearch: Interactive Image Search with Relative Attribute Feedback.  A. Kovashka, D. Parikh, and K. Grauman.  International Journal on Computer Vision (IJCV), Volume 115, Issue 2, pp 185-210, November 2015.  [link]  [arxiv]

Attribute Pivots for Guiding Relevance Feedback in Image Search.  A. Kovashka and K. Grauman.  In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf] [patent pending]

Attribute
Adaptation for Personalized Image Search.  A. Kovashka and K. Grauman.
 In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Sydney, Australia, December 2013.  [pdf]

Implied
Feedback: Learning Nuances of User Behavior in Image Search.  D. Parikh
and K. Grauman.  In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf]

WhittleSearch: Image Search with Relative Attribute Feedback. A. Kovashka, D. Parikh, and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012.  [pdf]  [supp]  [patent pending]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]
 
Efficient Region Search for Object Detection.  S. Vijayanarasimhan and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, June 2011.  [pdf]

Kernelized Locality-Sensitive
Hashing for Scalable Image Search.  B. Kulis and K. Grauman.  In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Kyoto, Japan, October, 2009. [pdf]

Kernelized Locality-Sensitive Hashing.  B. Kulis and K. Grauman.  IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),Vol. 34, No. 6, June 2012.  [link]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  P. Jain, S. Vijayanarasimhan, and K. Grauman.  In
Advances in Neural Information Processing Systems (NIPS), Vancouver,
Canada, December 2010.  [pdf]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  S. Vijayanarasimhan, P. Jain, and K. Grauman. 
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Volume
36, No. 2, pp. 276-288, February 2014.

Fast
Similarity Search for Learned Metrics.   B. Kulis, P. Jain, and K.
Grauman.   In IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), Vol. 31, No. 12, December, 2009. [link]

Accounting
for the Relative Importance of Objects in Image Retrieval.  S. J. Hwang
and K. Grauman.  In Proceedings of the British Machine Vision
Conference (BMVC), Aberystwyth, UK, September 2010. (Oral) [pdf]

Learning
the Relative Importance of Objects from Tagged Images for Retrieval and
Cross-Modal Search.  S. J. Hwang and K. Grauman.  International Journal
of Computer Vision (IJCV), published online October 2011.  [link]

Efficiently Searching for Similar Images.  K. Grauman.  Invited article in the Communications of the ACM, 2009.  [pdf]

Online
Metric Learning and Fast Similarity Search.  P. Jain, B. Kulis,
I. Dhillon, and K. Grauman.  In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2008.  (Oral) [pdf]

Fast
Image Search for Learned Metrics.  P. Jain, B. Kulis, and K.
Grauman.  In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Anchorage, Alaska, June 2008.  (Oral) [Best
Student Paper Award]    [pdf]

Pyramid
Match Hashing: Sub-Linear Time Indexing Over Partial
Correspondences.  K. Grauman and T. Darrell.  In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Minneapolis, MN, June 2007.  [pdf]

A Picture is Worth a Thousand Keywords: Image-Based Object Search on a Mobile Platform.  T. Yeh, K. Grauman, K. Tollmar, and T. Darrell.  In CHI 2005, Conference on Human Factors in Computing Systems, Portland, OR, April 2005.  [pdf]

from: http://www.cs.utexas.edu/~grauman/research/pubs-by-topic.html#Fast_similarity_search_and_image

UT-Austin大学在Image search and large-scale retrieval方面的一系列papers的更多相关文章

  1. Subgraph Search Over Large Graph Database

    Subgraph Search Over Large Graph Database Problem Definition Given a graph database and a query grap ...

  2. Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  4. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  5. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  6. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  7. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  9. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

随机推荐

  1. TypeScript学习笔记(四) - 类和接口

    本篇将介绍TypeScript里的类和接口. 与其他强类型语言类似,TypeScript遵循ECMAScript 2015标准,支持class类型,同时也增加支持interface类型. 一.类(cl ...

  2. oracle配置ODBC

    摘自:http://www.cnblogs.com/shelvenn/p/3799849.html 我使用的Windows 10,64位的操作系统. 1.下载驱动包 base包:instantclie ...

  3. java8的几种常用用法

    1. 如果接口的返回值有可能是null,请用Optional封装 public Optional<User> getUser() { return Optional.ofNullable( ...

  4. git更新到仓库

    记录每次更新到仓库 现在我们手上已经有了一个真实项目的 Git 仓库,并从这个仓库中取出了所有文件的工作拷贝.接下来,对这些文件作些修改,在完成了一个阶段的目标之后,提交本次更新到仓库. 请记住,工作 ...

  5. Socket 编程之 TCP 实现

    前几天介绍了计算机网络的一些概念,并介绍了几个协议.下面就说说 Java 中的 Socket 编程,服务器和客户端是如何通信的呢? 首先要介绍一下 Socket ,我们知道在 TCP/IP 协议簇中, ...

  6. Win10如何配置Jdk环境变量

    对于每一位做Java开发的朋友来说,Jdk是必须要安装的,安装好了Jdk,其实并没有结束,还需要配置Jdk的环境变量,系统在不断地更新,小编给大家介绍一下如何在Win10下配置Jdk,并检测是否配置成 ...

  7. luoguP4466 [国际集训队]和与积 莫比乌斯反演

    自然想到枚举\(gcd(a, b)\),不妨设其为\(d\),并且\(a = di, b = dj(a > b)\) 那么\(\frac{ab}{a + b} = \frac{dij}{i + ...

  8. 2-SAT的一些题目

    http://blog.sina.com.cn/s/blog_64675f540100k2xj.html 都一个类型的不是很想写.

  9. POJ1151 Atlantis 水题 计算几何

    http://poj.org/problem?id=1151 想学一下扫描线线段树,结果写了道水题. #include<iostream> #include<cstdio> # ...

  10. hdu 2732 最大流 **

    题意:题目是说一个n*m的迷宫中,有每个格子有柱子.柱子高度为0~3,高度为0的柱子是不能站的(高度为0就是没有柱子)在一些有柱子的格子上有一些蜥蜴,一次最多跳距离d,相邻格子的距离是1,只要跳出迷宫 ...