题目链接:https://hihocoder.com/problemset/problem/1343

#1343 : Stable Members

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

Recently Little Hi joined an algorithm learning group. The group consists of one algorithm master and N members. The members are numbered from 1 to N. Each member has one or more other members as his mentors. Some members' mentor is the master himself.

Every week each member sends a report of his own learning progress and the reports collected from his pupils (if there is any) to his mentors. The group is so well designed that there is no loop in the reporting chain so no one receives his own report from his pupil. And finally the master gets every one's report (maybe more than once).

Little Hi notices that for some members their reporting routes to the master can be easily cut off by a single member's (other than the master and himself) absence from the reporting duty. They are called unstable members while the others are stable members. Given the reporting network of the group, can you find out how many members are stable?

Assume there are 4 members in the group. Member 1 and 2 both have the master as their only mentor. Member 3 has 2 mentors: member 1 and member 2. Member 4 has 1 mentor: member 3. Then member 4 is the only unstable member in the group because if member 3 is absent his learning report will be unable to be sent to the master.

输入

The first line contains an integer N, the number of members.

The i-th line of the following N lines describe the mentors of the i-th member. The first integer is Ki, the number of mentors of the i-th member. Then follows Ki integers A1 ... AN, which are his mentors' numbers. Number 0 indicates that the master is one of his mentor.

For 40% of the data, 1 ≤ N ≤ 1000.

For 100% of the data, 1 ≤ N ≤ 100000.

For 100% of the data, 1 ≤ Ki ≤ 10, Ki < N, 0 ≤ AiN.

输出

Output the number of stable members.

样例输入
5
1 0
1 0
2 1 2
1 3
2 4 3
样例输出
3
题意:给一个有向无环图,定义一个点为unstable当且仅当删掉一个点(不能为它自己或点0)时,它不能与点0连通;其他点则为stable,求图中有几个stable点。
样例解释:
如左图所示,删掉点3,则4和5都无法连通到点0即master,所以4和5都是unstable点,1、2和3都是stable,所以最后答案为3个stable点。
题解:依次对点v进行拓扑排序,遍历其后续点,如果后续点的所有父节点都染色为v,则也染色为v,并入队列,标记为unstable点。
 #include<bits/stdc++.h>
using namespace std;
const int N = ;
struct node {
int color = ;
vector<int>s, p;//子节点、父节点
}a[N];
bool unstable[N];
bool all_colored(int v, int color) {
int num = a[v].p.size();
bool flag = true;
for(int i = ; flag && i < num; ++i)
flag &= (a[a[v].p[i]].color == color);
return flag;
}
void topo(int v) {
if(unstable[v]) return;
queue<int>q;
q.push(v);
a[v].color = v;
while(!q.empty()) {
int u = q.front(); q.pop();
int num = a[u].s.size();
for(int i = ; i < num; ++i) {
int son = a[u].s[i];
if(all_colored(son, v)) {
a[son].color = v;
unstable[son] = true;
q.push(son);
}
}
}
}
int main() {
int n, k, i, v, ans = ;
scanf("%d", &n);
for(i = ; i <= n; ++i) {
scanf("%d", &k);
while(k--) {
scanf("%d", &v);
a[i].p.push_back(v);
a[v].s.push_back(i);
}
}
for(i = ; i <= n; ++i) topo(i);
for(i = ; i <= n; ++i) ans += unstable[i];
printf("%d\n", n - ans);
return ;
}
还有其他解法,参考:http://www.cnblogs.com/demian/p/6536799.html

hihoCoder1343 : Stable Members【BFS拓扑排序】的更多相关文章

  1. hihocoder 1343 : Stable Members【拓扑排序】

    hihocoder #1343:题目 解释:一个学习小组,一共有N个学员,一个主管.每个学员都有自己的导师(一个或者多个),导师可以是其他学员也可以是主管.每周学员都要把自己的学习报告和收到的报告提交 ...

  2. C. Journey bfs 拓扑排序+dp

    C. Journey 补今天早训 这个是一个dp,开始我以为是一个图论,然后就写了一个dij和网络流,然后mle了,不过我觉得如果空间开的足够的,应该也是可以过的. 然后看了题解说是一个dp,这个dp ...

  3. uvaLA4255 Guess BFS+拓扑排序

    算法指南白书 思路:“连续和转化成前缀和之差” #include <stdio.h> #include <string.h> #include <iostream> ...

  4. CH 2101 - 可达性统计 - [BFS拓扑排序+bitset状压]

    题目链接:传送门 描述 给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量.N,M≤30000. 输入格式 第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条 ...

  5. hihocoder 1174 [BFS /拓扑排序判断是否有环]

    hihocoder 1174 [算法]: 计算每一个点的入度值deg[i],这一步需要扫描所有点和边,复杂度O(N+M). 把入度为0的点加入队列Q中,当然有可能存在多个入度为0的点,同时它们之间也不 ...

  6. Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序

         Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K       Description I ...

  7. 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)

    Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...

  8. BFS (1)算法模板 看是否需要分层 (2)拓扑排序——检测编译时的循环依赖 制定有依赖关系的任务的执行顺序 djkstra无非是将bfs模板中的deque修改为heapq

    BFS模板,记住这5个: (1)针对树的BFS 1.1 无需分层遍历 from collections import deque def levelOrderTree(root): if not ro ...

  9. hdu1532 用BFS求拓扑排序

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1285 题目给出一些点对之间的先后顺序,要求给出一个字典序最小的拓扑排列.对于拓扑排序的问题,我们有DF ...

随机推荐

  1. github删除仓库

    有的时候github的仓库创建错误了,不用了,想删除仓库 1.进入仓库,选择设置 2.拉到最下面,有一个Delete this repository删除仓库按钮,点击 3.输入需要删除的仓库的名称,直 ...

  2. Oracle表闪回功能

    1.启用表闪回首先要在表上支持行移动(在数据字典中设置标识来标识该操作可能会改变行ID,即同一条数据闪回成功后主键都一样,但行ID其实已经发生变化了) SQL> alter table base ...

  3. maven配置Mac平台

    Mac OS X 安装Maven: 下载 Maven, 并解压到某个目录.例如/Users/robbie/apache-maven-3.3.3 打开Terminal,输入以下命令,设置Maven cl ...

  4. win10 安装 oracle 11g 时遇到 [INS-13001] 环境不满足最低要求 的问题

    前言:自己系统上安装 oracle 时报错,故记录下来. 环境: win10 x64 oracle 11g 安装包 出错: 解决方案:同 https://www.cnblogs.com/yuxiaol ...

  5. js-权威指南学习笔记17

    第十七章 事件处理 1.事件处理程序或事件监听程序是处理或响应事件的函数. 2.事件对象是与特定事件相关且包含有关该事件详细信息的对象. 3.响应通过键盘改变焦点的表单元素在得到和失去焦点时会分别出发 ...

  6. 【代码笔记】iOS-iOS图片的原生(Graphics)

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  7. html基础-a标签-img标签-绝对/相对路径(3)

    美好的星期六,今天多写一点,争取早点写js这个有点小无聊. 一.先来讲点网页之间的跳转 (1).<a href=""></a>  href="这里 ...

  8. React-Native开发之BUG 总结

    本博客将详细记录在React-Native开发中所遇到的各种问题以及其解决方法. 个人感觉,React-Native开发初期真的是一脚一个大坑,分分钟被虐趴下. 不说了,直接上Bug 1.在Windo ...

  9. ArcEngine对Blob字段赋值的方法

    今天在测试数据入库程序,发现对某个图层操作之后,调用StopOperation,会出现“尝试写入或读取受保护的内存”错误. 经过测试,最终发现是因为该图层包含有Blob字段,而代码没有专门对Blob字 ...

  10. sql中 设置区分大小写

    CI 指定不区分大小写,CS 指定区分大小写alter table 表名 alter column 字段 nvarchar(100) collate chinese_prc_cs_as --区分大小写 ...