bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$
确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理。
我们还剩下$n-k$个元素,交集至少为$k$的方案数为$2^{2^{n-k}}$。
相当于在仅有剩下$n-k$个元素的集合里随便选,最后再往每个集合里塞进这$k$个元素。
然后就是很简单的容斥了。
减去交集至少为k加上其他一个元素的方案数,加上交集至少为k加上其他两个元素的方案数。。。
$$ans=C_{n}^k\times(2^{2^{n-k}}-C_{n-k}^1\times 2^{2^{n-k-1}}+C_{n-k}^2\times 2^{2^{n-k-2}}-.....)$$
好像网上其他做法跟我不太一样呢。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1000005
#define ll long long
using namespace std;
const int p = ;
int n,k;
ll pw(int x,int y)
{
ll lst=;
while(y)
{
if(y&)lst=lst*x%p;
y>>=;
x=(ll)x*x%p;
}
return lst;
}
int pow[N],jie[N];
int main()
{
pow[]=;jie[]=;
scanf("%d%d",&n,&k);
for(int i=;i<=n-k;i++)pow[i]=(pow[i-]*)%(p-);
for(int i=;i<=n;i++)jie[i]=(1LL*jie[i-]*i)%p;
ll ans=;
ans=pw(,pow[n-k]);
for(int i=;i<=n-k;i++)
{
int tmp=1LL*pw(,pow[n-k-i])*jie[n-k]%p*pw(jie[i],p-)%p*pw(jie[n-k-i],p-)%p;
if(i&)ans=(ans-tmp+p)%p;
else ans=(ans+tmp)%p;
}
ans=ans*jie[n]%p*pw(jie[k],p-)%p*pw(jie[n-k],p-)%p;
printf("%lld\n",ans);
return ;
}
bzoj 2839 : 集合计数 容斥原理的更多相关文章
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
随机推荐
- tensorflow-gpu与CUDA、CUDNN的版本问题
折腾了将近两天的时间,终于搞好了,感觉把所有的坑都踩过了一遍.....泪牛满面 1.先安装CUDA,并安装,尽量不要下载最新版本的,坑,本机可以下载最新本10.0版本,但与CUDNN和tensorfl ...
- ansible使用1
常用软件安装及使用目录 ansible软件2 ### ansible软件部署安装需求#### 01. 需要有epel源 系统yum源(base epel--pip gem) sshpass---e ...
- Java 的 java_home, path, classpath
java_home: 指定 jdk 的安装目录. 第三方软件 Eclipse / Tomcat 在 java_home 指定的目录下查找安装好的 jdk. path: 配置 jdk 的安装目录.在命令 ...
- 第十次PSP
- Java面试& HashMap实现原理分析
1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端. 数组 数组存储区间是连续的,占用内存严重,故空间复杂的很大.但数组的二分查找时间复杂度小,为O( ...
- Maven解读:强大的依赖体系
Github地址:https://github.com/zwjlpeng/Maven_Detail Maven最大的好处就是能够很方便的管理项目对第三方Jar包的依赖,只需在Pom文件中添加几行配置文 ...
- 关于react 官方脚手架使用出现的问题
首先按照官网说明,一路的安装下来,很顺利,然后开始运行吧,提示个错误,缺少index.js 文件 原来是默认给出的文件是App.js 如何更改呢 找到react-script模块文件夹config下 ...
- mongodb授权认证 介绍
mongodb存储所有的用户信息在admin 数据库的集合system.users中,保存用户名.密码和数据库信息.mongodb默认不启用授权认证,只要能连接到该服务器,就可连接到mongod.若要 ...
- requests爬取豆瓣热门电视剧
# *_*coding:utf-8 *_* import requests payload = {'key1': 'value1', 'key2': 'value2'} headers = {'use ...
- [转帖]三大运营商2G/3G/4G频率分配和网络制式
三大运营商2G/3G/4G频率分配和网络制式 https://blog.csdn.net/weixin_38759340/article/details/80890142 经过二十多年长期的发展,我国 ...