bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$
确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理。
我们还剩下$n-k$个元素,交集至少为$k$的方案数为$2^{2^{n-k}}$。
相当于在仅有剩下$n-k$个元素的集合里随便选,最后再往每个集合里塞进这$k$个元素。
然后就是很简单的容斥了。
减去交集至少为k加上其他一个元素的方案数,加上交集至少为k加上其他两个元素的方案数。。。
$$ans=C_{n}^k\times(2^{2^{n-k}}-C_{n-k}^1\times 2^{2^{n-k-1}}+C_{n-k}^2\times 2^{2^{n-k-2}}-.....)$$
好像网上其他做法跟我不太一样呢。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1000005
#define ll long long
using namespace std;
const int p = ;
int n,k;
ll pw(int x,int y)
{
ll lst=;
while(y)
{
if(y&)lst=lst*x%p;
y>>=;
x=(ll)x*x%p;
}
return lst;
}
int pow[N],jie[N];
int main()
{
pow[]=;jie[]=;
scanf("%d%d",&n,&k);
for(int i=;i<=n-k;i++)pow[i]=(pow[i-]*)%(p-);
for(int i=;i<=n;i++)jie[i]=(1LL*jie[i-]*i)%p;
ll ans=;
ans=pw(,pow[n-k]);
for(int i=;i<=n-k;i++)
{
int tmp=1LL*pw(,pow[n-k-i])*jie[n-k]%p*pw(jie[i],p-)%p*pw(jie[n-k-i],p-)%p;
if(i&)ans=(ans-tmp+p)%p;
else ans=(ans+tmp)%p;
}
ans=ans*jie[n]%p*pw(jie[k],p-)%p*pw(jie[n-k],p-)%p;
printf("%lld\n",ans);
return ;
}
bzoj 2839 : 集合计数 容斥原理的更多相关文章
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
随机推荐
- Mac环境搭建以太坊私有链
原文地址: 石匠的blog 为了测试以太坊智能合约,最方便的是在本地搭建一个以太坊私有链.在mac上搭建环境主要需要以下步骤. geth安装 geth是go-ethereum的简写,是一个用go语言编 ...
- 查看linux端口对应的进程id
例如:查看占用4040端口的进程 ss -lptn 'sport = :4040'
- ssh软件及命令的使用
常用软件安装及使用目录 第1章 ssh常用用法小结 1.1 连接到远程主机: 命令格式 : ssh name@remoteserver 或者 ssh remoteserver -l name 说明:以 ...
- mybatis oracle和mysql like模糊查询写法
oracle:RESOURCE_NAME LIKE '%' || #{resourceName} || '%'mysql:RESOURCE_NAME like concat(concat(" ...
- 第二阶段Sprint冲刺会议8
进展:重新规划主界面,把视频录制暂放到主页面里,先实现功能,视频提醒后期再做.
- mysql非安装包安装教程
设置mysql的环境变量 本人设置安装的路径是:E:\WebApplication\webMySQL\mysql-5.7.13-winx64 我的电脑 ---> 高级系统配置 ---> 环 ...
- frist Django app — 一、 创建工程(转载)
转载地址:https://www.cnblogs.com/sunshine-2015/p/5658283.html 缘起 既然python都学了,学习python的时候感觉是相见恨晚,一种新的编程语言 ...
- MongoDB安装笔记
2017年11月17日,在Windows Service 2008R2上成功安装MongoDB. 版本:mongodb-win32-x86_64-2008plus-ssl-3.4.6-signed.m ...
- poi excel导入 数字自动加小数点
问题:导入excel表,若表格中为整数数字,不管单元格设置成数字格式还是文本格式,导入时都会出现小数点和0. 我遇到的问题是:一个名称,做测试数据的时候做了纯整形数字,发现了这个问题. 解决办法:在代 ...
- 8th 对软件工程的理解(读构建之法有感)
对于任何一个学计算机的人来说,软件都不陌生,甚至于一个普通的朝九晚五的上班族,他的每日生活工作也都与软件有着密不可分的关系.然而,程序又是如何从一行行指尖留下的代码,机器存储的数据变成快捷高效的软件的 ...