解题:AHOI2017/HNOI2017 礼物
先不管旋转操作,只考虑增加亮度这个操作。显然这个玩意的影响是相对于$x,y$固定的,所以可以枚举增加的亮度然后O(1)算出来。为了方便我们把这个操作换种方法表示,只让一个手环改变$[-m,m]$中的一个亮度$k$。这样把$\sum\limits_{i=1}^n(x_i-y_i+k)^2$拆完以后发现只有$\sum\limits_{i=1}^n 2x_iy_i$这个玩意跟$x,y$的顺序有关,于是先扫一遍把其他的求出来
然后考虑旋转的操作,环上问题有个很经典的操作:断环为链。注意到这里是两个多项式的同一项向答案的同一项做贡献,相当于差值一定,于是就是套路的把一个多项式反过来,然后卷就完事了
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
const double pai=acos(-);
struct cpx
{
double x,y;
}a[N],b[N];
cpx operator + (cpx a,cpx b)
{
return (cpx){a.x+b.x,a.y+b.y};
}
cpx operator - (cpx a,cpx b)
{
return (cpx){a.x-b.x,a.y-b.y};
}
cpx operator * (cpx a,cpx b)
{
double x1=a.x,x2=b.x,y1=a.y,y2=b.y;
return (cpx){x1*x2-y1*y2,x1*y2+x2*y1};
}
double Sin[M],Cos[M];
long long outp,cal,sm1,sm2;
int n,m,nm,rd,rev[N],lgg[N],ans[N];
void read(int &x)
{
x=; char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch))
x=(x<<)+(x<<)+(ch^),ch=getchar();
}
void prework()
{
register int i;
read(n),read(m);
for(i=;i<=n;i++)
{
read(rd),sm1+=rd*rd,sm2+=rd;
a[i].x=a[i+n].x=rd;
}
for(i=;i<=n;i++)
{
read(rd),sm1+=rd*rd,sm2-=rd;
b[n-i+].x=rd;
}
cal=outp=1e9,nm=n,m=*n,n=,lgg[]=; while(n<=m) n<<=;
for(i=;i<=n;i++)
lgg[i]=lgg[i>>]+;
for(i=;i<=n;i++)
rev[i]=(rev[i>>]>>)+(i&)*(n>>);
for(i=;i<=;i++)
Sin[i]=sin(*pai/(<<i)),Cos[i]=cos(*pai/(<<i));
}
void transform(cpx *c,int t)
{
register int i,j,k;
for(i=;i<n;i++)
if(rev[i]>i) swap(c[i],c[rev[i]]);
for(i=;i<=n;i<<=)
{
int len=i>>;
cpx omg={Cos[lgg[i]],Sin[lgg[i]]*t};
for(j=;j<n;j+=i)
{
cpx ori={,},tmp;
for(k=j;k<j+len;k++,ori=ori*omg)
tmp=ori*c[k+len],c[k+len]=c[k]-tmp,c[k]=c[k]+tmp;
}
}
}
int main()
{
register int i; prework();
transform(a,),transform(b,);
for(i=;i<n;i++) a[i]=a[i]*b[i];
transform(a,-);
for(i=;i<=*nm;i++) ans[i]=(int)(a[i].x/n+0.5);
for(i=-m;i<=m;i++) cal=min(cal,sm1+1ll*i*i*nm+2ll*sm2*i);
for(i=;i<=nm;i++) outp=min(outp,cal-2ll*ans[i+nm]);
printf("%lld",outp);
return ;
}
解题:AHOI2017/HNOI2017 礼物的更多相关文章
- 【LG3723】[AHOI2017/HNOI2017]礼物
[LG3723][AHOI2017/HNOI2017]礼物 题面 洛谷 题解 首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了 设我们当前已经选好了 ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 【BZOJ4827】 [Hnoi2017]礼物
BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...
- 4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
随机推荐
- leetcode第217.题存在重复元素
1.题目描述 给定一个整数数组,判断是否存在重复元素. 如果任何值在数组中出现至少两次,函数返回 true.如果数组中每个元素都不相同,则返回 false. 2.示例 2.1 输入: [1,2,3,1 ...
- [linux] 查看网卡UUID
virtualbox复制了虚拟机,重新初始化网卡后,需要对/etc/sysconfig/network-scripts/ifcfg-eth0更新UUID值,虽然不改暂时也没发现有问题. 网上查找需要n ...
- HTTP-HTTPS区别
超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息,HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可以直接读懂 ...
- 分布式日志收集收集系统:Flume(转)
Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统.支持在系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力.Fl ...
- Tomcat提高并发
Centos7环境下Tomcat 启动慢的解决方案1.增加熵值(本质增加random)安装软件 >> Yum –y install rng-tools 启动熵服务 >> Sys ...
- java poi给sheet表格中的某个单元格添加批注
Label l = , , "A cell with a comment"); WritableCellFeatures cellFeatures = new WritableCe ...
- ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)
中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这 ...
- Python Web开发之Flask
PythonWEB框架之Flask 前言: Django:1个重武器,包含了web开发中常用的功能.组件的框架:(ORM.Session.Form.Admin.分页.中间件.信号.缓存.ContenT ...
- AJAX 跨域问题 php
原生ajax请求方式: var xhr = new XMLHttpRequest(); xhr.open("POST", "http://xxxx.com/demo/b/ ...
- Java Queue 专题
关于java中的Queue,经常用到,做个总结 Queue是一种很常见的数据结构类型,在java里面Queue是一个接口,它只是定义了一个基本的Queue应该有哪些功能规约. (Java中的集合包括三 ...