题面

先不管旋转操作,只考虑增加亮度这个操作。显然这个玩意的影响是相对于$x,y$固定的,所以可以枚举增加的亮度然后O(1)算出来。为了方便我们把这个操作换种方法表示,只让一个手环改变$[-m,m]$中的一个亮度$k$。这样把$\sum\limits_{i=1}^n(x_i-y_i+k)^2$拆完以后发现只有$\sum\limits_{i=1}^n 2x_iy_i$这个玩意跟$x,y$的顺序有关,于是先扫一遍把其他的求出来

然后考虑旋转的操作,环上问题有个很经典的操作:断环为链。注意到这里是两个多项式的同一项向答案的同一项做贡献,相当于差值一定,于是就是套路的把一个多项式反过来,然后卷就完事了

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
const double pai=acos(-);
struct cpx
{
double x,y;
}a[N],b[N];
cpx operator + (cpx a,cpx b)
{
return (cpx){a.x+b.x,a.y+b.y};
}
cpx operator - (cpx a,cpx b)
{
return (cpx){a.x-b.x,a.y-b.y};
}
cpx operator * (cpx a,cpx b)
{
double x1=a.x,x2=b.x,y1=a.y,y2=b.y;
return (cpx){x1*x2-y1*y2,x1*y2+x2*y1};
}
double Sin[M],Cos[M];
long long outp,cal,sm1,sm2;
int n,m,nm,rd,rev[N],lgg[N],ans[N];
void read(int &x)
{
x=; char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch))
x=(x<<)+(x<<)+(ch^),ch=getchar();
}
void prework()
{
register int i;
read(n),read(m);
for(i=;i<=n;i++)
{
read(rd),sm1+=rd*rd,sm2+=rd;
a[i].x=a[i+n].x=rd;
}
for(i=;i<=n;i++)
{
read(rd),sm1+=rd*rd,sm2-=rd;
b[n-i+].x=rd;
}
cal=outp=1e9,nm=n,m=*n,n=,lgg[]=; while(n<=m) n<<=;
for(i=;i<=n;i++)
lgg[i]=lgg[i>>]+;
for(i=;i<=n;i++)
rev[i]=(rev[i>>]>>)+(i&)*(n>>);
for(i=;i<=;i++)
Sin[i]=sin(*pai/(<<i)),Cos[i]=cos(*pai/(<<i));
}
void transform(cpx *c,int t)
{
register int i,j,k;
for(i=;i<n;i++)
if(rev[i]>i) swap(c[i],c[rev[i]]);
for(i=;i<=n;i<<=)
{
int len=i>>;
cpx omg={Cos[lgg[i]],Sin[lgg[i]]*t};
for(j=;j<n;j+=i)
{
cpx ori={,},tmp;
for(k=j;k<j+len;k++,ori=ori*omg)
tmp=ori*c[k+len],c[k+len]=c[k]-tmp,c[k]=c[k]+tmp;
}
}
}
int main()
{
register int i; prework();
transform(a,),transform(b,);
for(i=;i<n;i++) a[i]=a[i]*b[i];
transform(a,-);
for(i=;i<=*nm;i++) ans[i]=(int)(a[i].x/n+0.5);
for(i=-m;i<=m;i++) cal=min(cal,sm1+1ll*i*i*nm+2ll*sm2*i);
for(i=;i<=nm;i++) outp=min(outp,cal-2ll*ans[i+nm]);
printf("%lld",outp);
return ;
}

解题:AHOI2017/HNOI2017 礼物的更多相关文章

  1. 【LG3723】[AHOI2017/HNOI2017]礼物

    [LG3723][AHOI2017/HNOI2017]礼物 题面 洛谷 题解 首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了 设我们当前已经选好了 ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

  4. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  5. 【BZOJ4827】 [Hnoi2017]礼物

    BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...

  6. 4827: [Hnoi2017]礼物

    4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...

  7. [BZOJ4827][Hnoi2017]礼物(FFT)

    4827: [Hnoi2017]礼物 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1315  Solved: 915[Submit][Status] ...

  8. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  9. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

随机推荐

  1. 机器人平台框架Yarp - Yet another robot platform

    简介 ROS有强大和易用的特性,用的人很多,目前已经推出2.0版本,有相关的官网和论坛.然而其缺点也比较明显. 只能基于Ubuntu系统,且一个ROS版本只能对应一个具体的Ubuntu版本    通信 ...

  2. linux安装配置JDK脚本

    #!/bin/bash # install jdk and configuring environment variables function installjdk(){ tar -zxf jdk- ...

  3. FileZilla-FTP连接失败

    状态: 已登录状态: 读取“/”的目录列表...命令: CWD /响应: 250 CWD successful. "/" is current directory.命令: TYPE ...

  4. cal命令详解

    基础命令学习目录首页 原文链接:https://www.yiibai.com/linux/cal.html cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳 ...

  5. Javascript开发者 常用知识

    Javascript是一种日益增长的语言,特别是现在ECMAScript规范按照每年的发布时间表发布.伴随着这门语言的规模化和快速发展,掌握JS(不仅仅是jQuery)的重要性,变得更加重要. 这不是 ...

  6. java实验五实验报告

    一.实验内容 Cmp传输与加解密 结对编程,一人服务器,一人客户端,服务器向客户端发送经RSA加密的密钥和用密钥加密的密文(使用DES算法),客户端负责接收加密后的密钥和密文,并解密得出明文. 二.实 ...

  7. 第二阶段Sprint冲刺会议3

     进展:讨论视频录制的具体功能,查看有关资料,开始着手编写有关代码.

  8. Task 6.4 冲刺Two之站立会议7

    今天又重新对服务器部分加以分析改进,由于用户登录时必须得连接服务器,所以作为整个软件最核心的服务器的部分,只有保障了这个内容才能保证软件的正常运行.

  9. 学习总结:jQuery插件开发模式和结构

    学习博客链接: ①https://www.cnblogs.com/cyStyle/ ② https://www.cnblogs.com/chengyunshen/p/7277305.html ③ ht ...

  10. React鼠标事件

    说明:假设有一个用户名片,当鼠标滑到上面,显示用户详细信息,且用户详情卡片位置随鼠标位置改变而改变. UI框架:Material-ui 实现思路: 1.一个用户简介组件A(用于展示用户列表): 2.一 ...