传送门

思路分析

怎么求解呢?

其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了。可以通过编写一个 $ bool $ 函数来判断算式的值是不是0

至于如何计算这个多项式,用秦九韶算法就可以解决

细节提示 :

1.防爆 $ int $ 常用方法:模大质数!(另:好像模一个质数有的时候会出事233可以多模几个大质数

2.最好用上读入优化,而且边读边取模。

3 . $ sum $ 每次都要清零

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define re register
using namespace std;
const long long mod = 1000000007; inline int read(){
char ch = getchar();
long long f = 1 , x = 0 ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = ((x << 1) + (x << 3) + ch - '0') % mod ;ch = getchar();}
return x * f;
} long long n,m,ans,cnt,sum;
bool flag = true;//用来判断是否有解
long long a[110],key[1000005]; inline bool calc(long long x) {
sum = 0 ;
for(re long long i = n ; i >= 1 ; --i) {
sum = ((a[i] + sum) * x) % mod;
}
sum = (sum + a[0]) % mod;
return !sum;
} int main(){
n = read(); m = read();
for(re long long i = 0 ; i <= n ; ++i) {
a[i] = read();
}
for(re long long i = 1 ; i <= m ; ++i) {
if(calc(i)){
flag = false;
ans++;
key[++cnt] = i ;
}
}
if(flag) {
printf("%lld\n",ans);
return 0;
}
printf("%lld\n",ans);
for(re long long i = 1 ; i <= cnt ; ++i)
printf("%lld\n" , key[i]);
return 0;
}

洛谷P2312解方程的更多相关文章

  1. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  2. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  3. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  4. [NOIP2014] 提高组 洛谷P2312 解方程

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  5. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  6. 2018.11.02 洛谷P2312 解方程(数论)

    传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...

  7. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  8. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

  9. 洛谷P2312 解方程(暴力)

    题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...

随机推荐

  1. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形

    USACO划水中... 题目中要求经过原点的三角形数目,但这种三角形没什么明显的特点并不好求,所以可以求不经过原点的三角形数量. 对于一个非法三角形,它离原点最近的那条边连接的两个点所连的两条边一定在 ...

  2. PACS&DICOM

    What is DICOM, PACS, and Workstation? What is DICOM? We will take them one at a time – So first of a ...

  3. 统计学习方法:CART算法

    作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学 ...

  4. SQL复杂语句查询练习

    --复杂查询练习 -- 1 .列出所有员工的年工资,按年薪从低到高排序. SELECT (SAL+NVL(COMM,0))*12 INCOME FROM EMP ORDER BY INCOME; -- ...

  5. python基础之字符串格式化

    python中字符串格式化有两种,一种是%,另一种是str中的format()功能. % 列举格式符 %s    字符串 %c    单个字符 %b    二进制整数 %d    十进制整数 %i   ...

  6. Docker应用二:docker常用命令介绍

     Docker常用命令使用介绍 docker中常用的命令: 1.docker search image_name:搜查镜像 2.docker pull image_name:从镜像库中拉去镜像 3.d ...

  7. 记录第一次阿里云服务器部署java web工程的经历

    起因:测试一个微信小程序,发现所有的请求要求为https的形式,开发工具忽略后手机无法测试,故尝试配置. 准备:阿里云服务器一台 域名一个(解析在服务器)     tomcat7.0.54     j ...

  8. 深入分析tcp close与shutdown

    关闭socket-close 我们知道,tcp是一种支持全双工(full-duplex)通信的的协议,也就是说建立连接的两端可以在同一个时刻发送.接受数据.在需要关闭套接字的时候,我们一般调用: in ...

  9. 【整理】HTML5游戏开发学习笔记(1)- 骰子游戏

    <HTML5游戏开发>,该书出版于2011年,似乎有些老,可对于我这样没有开发过游戏的人来说,却比较有吸引力,选择自己感兴趣的方向来学习html5,css3,相信会事半功倍.不过值得注意的 ...

  10. 10 款非常棒的CSS代码格式化工具推荐

    如果你刚开始学习CSS,这意味着你的很多代码或结构可能需要优化,比如你可能过多使用了类.添加了多余的间隔或空行等等,这将导致代码臃肿.混乱,可读性和执行效率将大大降低. 本文为你整理了几款CSS工具, ...