传送门

思路分析

怎么求解呢?

其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了。可以通过编写一个 $ bool $ 函数来判断算式的值是不是0

至于如何计算这个多项式,用秦九韶算法就可以解决

细节提示 :

1.防爆 $ int $ 常用方法:模大质数!(另:好像模一个质数有的时候会出事233可以多模几个大质数

2.最好用上读入优化,而且边读边取模。

3 . $ sum $ 每次都要清零

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define re register
using namespace std;
const long long mod = 1000000007; inline int read(){
char ch = getchar();
long long f = 1 , x = 0 ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = ((x << 1) + (x << 3) + ch - '0') % mod ;ch = getchar();}
return x * f;
} long long n,m,ans,cnt,sum;
bool flag = true;//用来判断是否有解
long long a[110],key[1000005]; inline bool calc(long long x) {
sum = 0 ;
for(re long long i = n ; i >= 1 ; --i) {
sum = ((a[i] + sum) * x) % mod;
}
sum = (sum + a[0]) % mod;
return !sum;
} int main(){
n = read(); m = read();
for(re long long i = 0 ; i <= n ; ++i) {
a[i] = read();
}
for(re long long i = 1 ; i <= m ; ++i) {
if(calc(i)){
flag = false;
ans++;
key[++cnt] = i ;
}
}
if(flag) {
printf("%lld\n",ans);
return 0;
}
printf("%lld\n",ans);
for(re long long i = 1 ; i <= cnt ; ++i)
printf("%lld\n" , key[i]);
return 0;
}

洛谷P2312解方程的更多相关文章

  1. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  2. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  3. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  4. [NOIP2014] 提高组 洛谷P2312 解方程

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  5. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  6. 2018.11.02 洛谷P2312 解方程(数论)

    传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...

  7. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  8. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

  9. 洛谷P2312 解方程(暴力)

    题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...

随机推荐

  1. ip netns

    虚拟化网络都是基于netns实现,不管是昨日的openstack,还是今日的docker. ip netns ip-netns - process network namespace manageme ...

  2. bzoj 3611: [Heoi2014]大工程 && bzoj 2286: [Sdoi2011消耗战

    放波建虚树的模板. 大概是用一个栈维护根节点到当前关键点的一条链,把其他深度大于lca的都弹出去. 每次做完记得复原. 还有sort的时候一定要加cmp!!! bzoj 3611 #include&l ...

  3. 从新浪JS服务器获得股票和股指深度行情(.NET)

    当我们需要通过网络来自动获取股指或股票的深度行情时,一般有以下两种方法可以获得.目前除了使用Python进行爬虫获取(需要解析html获得)外还可以通过新浪提供的JS行情服务器获得,本文采用的是后者( ...

  4. Redis3未授权访问漏洞导致服务器被入侵

    今天在腾讯云上搭的开发环境里的一台机器cpu load飚升老高,然后还能登陆上去,top后发现两个可疑进程./root/目录下有修改过的文件./opt目录被干掉了, 后经分析,这台机器上有redis外 ...

  5. array_merge 优化调整

    function dealed_array_merge($a,$b){ if ($a && !$b){ return $a; } if (!$a && $b){ ret ...

  6. STL中的优先级队列priority_queue

    priority_queue(queue类似)完全以底部容器为根据,再加上二叉堆(大根堆或者小根堆)的实现原理,所以其实现非常简单,缺省情况下priority_queue以vector作为底部容器.另 ...

  7. Docker Macvlan

    参考博客:https://blog.csdn.net/daye5465/article/details/77412619 一.Macvlan 交换机的vlan是根据端口来划分的,如果一个PC接入vla ...

  8. R语言数据整理

    基本操作 读入csv数据 data <- read.csv("D:/Project/180414/data.csv", header = TRUE) 写出csv数据 writ ...

  9. MySQL 快速入门

    MySQL的相关概念介绍 MySQL 为关系型数据库(Relational Database Management System), 这种所谓的"关系型"可以理解为"表格 ...

  10. Docker部署Tomcat实例

    1.使用Docker部署Tomcat服务 http://www.open-open.com/lib/view/open1455717671698.html 2.搭建docker私有仓库 http:// ...