CF17E Palisection 差分+manacher算法
题目大意:
给定一个串$S$,询问有多少对相交的回文子串
直接做的办法:
我们先考虑求出以$i$为结尾的串的数量,这个很好统计
之后,我们再求出所有包含了点$i$的回文串的数目
这个相当于在$i$的左边加上一个等差数列,右边同理可以统计出来
二次差分后维护这些东西就可以做到$O(n)$
听起来就很难打....
考虑反面
求出所有不相交的回文子串对的数目
只需要求出所有的回文串的数目
以及以点$i$为开头的串的数目,和以点$1 ... i - 1$为结尾的串的数目
这两个也十分统计
$O(n)$即可
注意不要被"#"给多余统计了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++) const int sid = ;
const int mod = ; inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < ) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; } int n, m, ans;
char s[sid], t[sid];
int r[sid], st[sid], ed[sid]; int main() {
cin >> n;
scanf("%s", s + ); rep(i, , n)
t[++ m] = '#', t[++ m] = s[i];
t[++ m] = '#'; r[] = ;
int mr = , pos = ;
rep(i, , m) {
r[i] = min(mr - i + , r[pos + pos - i]);
while(i - r[i] > && t[i + r[i]] == t[i - r[i]]) r[i] ++;
if(i + r[i] - > mr) mr = i + r[i] - , pos = i;
st[i - r[i] + ] ++; st[i + ] --;
ed[i] ++; ed[i + r[i]] --;
inc(ans, r[i] / );
} int sum = ;
ans = 1ll * ans * (ans - ) / % mod;
rep(i, , m) {
st[i] += st[i - ];
ed[i] += ed[i - ];
if(t[i] != '#') {
dec(ans, mul(st[i], sum));
inc(sum, ed[i]);
}
} cout << ans << endl;
return ;
}
原来CF是不能开int128的...
CF17E Palisection 差分+manacher算法的更多相关文章
- CF17E Palisection(manacher)
题意 给出一个长度为N的字符串S,问S中有多少个回文子串对(i,j)使得i,j在S中的位置相交?(N<=2*106) 题解 #include<iostream> #include&l ...
- CF17E Palisection(manacher/回文树)
CF17E Palisection(manacher/回文树) Luogu 题解时间 直接正难则反改成求不相交的对数. manacher求出半径之后就可以差分搞出以某个位置为开头/结尾的回文串个数. ...
- manacher算法笔记
模板 [模板]manacher算法 不妨先只考虑如何求长度为奇数的回文串 记\(P[i]\)表示以\(i\)为中心最多向两边扩展几个字符,满足回文 如串\(ababa\), \(P[1]=0,P[2] ...
- HDU3068 回文串 Manacher算法
好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...
- 差分进化算法 DE-Differential Evolution
差分进化算法 (Differential Evolution) Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...
- manacher算法专题
一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 1089 最长回文子串 V2(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa ...
- 51nod1089(最长回文子串之manacher算法)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...
随机推荐
- connect by和strart with子句
--使用connect by和strart with子句 SELECT [level],column,expression, ... FROM table [WHERE where_clause] [ ...
- 【codeforces】【比赛题解】#872 CF Round #440 (Div.2)
链接. [A]寻找漂亮数字 题意: 给定了两列非零数字.我们说一个数是漂亮的,当它的十进制表达中有至少一个数从数列一中取出,至少有一个数从数列二中取出.最小的漂亮数字是多少? 输入: 第一行两个数\( ...
- go 函数的作用域及可见性
1.全局变量,在程序整个生命周期有效 比如: test.go 中 我们定义 了 a 作为全局变量,那么在这个程序中任何地方都可以调用a, 这个 2. 局部变量,分为两种:1)函数内定义,2)语句块内定 ...
- Apple Notification Center Service--ANCS【转】
Apple Notification Center Service 转自:http://studentdeng.github.io/blog/2014/03/22/ancs/ MAR 22ND, 20 ...
- 一步一步搭建 oracle 11gR2 rac+dg之grid安装(四)【转】
一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之grid安装 (四) 转自 一步一步搭建 oracle 11gR2 rac+d ...
- MongoDB-MongoDB重装系统后恢复
重装系统后,把原mongoDB安装目录和原mongoDB的data目录拷贝到新硬盘的D盘上. 恢复的方法如下. 1.D:\Mongodb里放着mongod.cfg和data C:\Users\Admi ...
- ASP .Net Core系统部署到SUSE 16 Linux Enterprise Server 12 SP2 64 具体方案
.Net Core 部署到 SUSE 16 Linux Enterprise Server 12 SP2 64 位中的步骤 1.安装工具 1.apache 2..Net Core(dotnet-sdk ...
- 20165203&20165206结对创意感想
一.结对学习过程 我和我的搭档性格志趣相投,而且各有所长,我们两个均属于一丝不苟的人,做一件事就要把它做好.因此,我们学习理念相同,志趣相投,这可能会占很大的优势.首先,我们会利用一周的前几天看课本, ...
- Pyhton核心编程-Chap2习题-DIY
在学Python,在看<Python核心编程>的pdf,做了Chap2的题目,答案为DIY # Filename: 2-11.py # Author: ChrisZZ mylist = [ ...
- Redis(一)Redis简述
一 Redis 概念 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,和Memcached类似,它支持存储的value类型相对更多,包 ...