题目大意:

给定一个串$S$,询问有多少对相交的回文子串

直接做的办法:

我们先考虑求出以$i$为结尾的串的数量,这个很好统计

之后,我们再求出所有包含了点$i$的回文串的数目

这个相当于在$i$的左边加上一个等差数列,右边同理可以统计出来

二次差分后维护这些东西就可以做到$O(n)$

听起来就很难打....

考虑反面

求出所有不相交的回文子串对的数目

只需要求出所有的回文串的数目

以及以点$i$为开头的串的数目,和以点$1 ... i - 1$为结尾的串的数目

这两个也十分统计

$O(n)$即可

注意不要被"#"给多余统计了

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++) const int sid = ;
const int mod = ; inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < ) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; } int n, m, ans;
char s[sid], t[sid];
int r[sid], st[sid], ed[sid]; int main() {
cin >> n;
scanf("%s", s + ); rep(i, , n)
t[++ m] = '#', t[++ m] = s[i];
t[++ m] = '#'; r[] = ;
int mr = , pos = ;
rep(i, , m) {
r[i] = min(mr - i + , r[pos + pos - i]);
while(i - r[i] > && t[i + r[i]] == t[i - r[i]]) r[i] ++;
if(i + r[i] - > mr) mr = i + r[i] - , pos = i;
st[i - r[i] + ] ++; st[i + ] --;
ed[i] ++; ed[i + r[i]] --;
inc(ans, r[i] / );
} int sum = ;
ans = 1ll * ans * (ans - ) / % mod;
rep(i, , m) {
st[i] += st[i - ];
ed[i] += ed[i - ];
if(t[i] != '#') {
dec(ans, mul(st[i], sum));
inc(sum, ed[i]);
}
} cout << ans << endl;
return ;
}

原来CF是不能开int128的...

CF17E Palisection 差分+manacher算法的更多相关文章

  1. CF17E Palisection(manacher)

    题意 给出一个长度为N的字符串S,问S中有多少个回文子串对(i,j)使得i,j在S中的位置相交?(N<=2*106) 题解 #include<iostream> #include&l ...

  2. CF17E Palisection(manacher/回文树)

    CF17E Palisection(manacher/回文树) Luogu 题解时间 直接正难则反改成求不相交的对数. manacher求出半径之后就可以差分搞出以某个位置为开头/结尾的回文串个数. ...

  3. manacher算法笔记

    模板 [模板]manacher算法 不妨先只考虑如何求长度为奇数的回文串 记\(P[i]\)表示以\(i\)为中心最多向两边扩展几个字符,满足回文 如串\(ababa\), \(P[1]=0,P[2] ...

  4. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  5. 差分进化算法 DE-Differential Evolution

    差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...

  6. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  7. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  8. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  9. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

随机推荐

  1. jquery $.post() 向php传值 实现简单的二级联动

    更多内容推荐微信公众号,欢迎关注: 1 其中selectid是一个下拉菜单的id $().ready(function () { $("#selectid").change(fun ...

  2. 11 The Go Memory Model go语言内置模型

    The Go Memory Model go语言内置模型 Version of May 31, 2014 Introduction 介绍 Advice 建议 Happens Before 在发生之前 ...

  3. 试用Redis

    Windows 10家庭中文版,运行于VirtualBox上的Ubuntu 18.04,Redis 4.0.10, Redis,久仰大名!因为没有从事互联网行业,所以一直没有使用过.近期找工作,也隐约 ...

  4. python面向对象(二)之封装

    封装定义: 在程序设计中,封装(Encapsulation)是对具体对象的一种抽象,即将某些部分隐藏起来,在程序外部看不到,其含义是其他程序无法调用. 即"封装"就是将抽象得到的数 ...

  5. UFLDL 教程学习笔记(三)

    教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...

  6. python_docx制作word文档

    一.docx模块 Python可以利用python-docx模块处理word文档,处理方式是面向对象的.也就是说python-docx模块会把word文档,文档中的段落.文本.字体等都看做对象,对对象 ...

  7. 20165203实验四 Andriod程序设计

    20165203实验四 Andriod程序设计 实验内容 安装 Android Stuidio 学习Android Stuidio调试应用程序 实验要求 1.没有Linux基础的同学建议先学习< ...

  8. Knockout.Js官网学习Demo(使用VS2012或者VS2013均可打开)

    https://pan.baidu.com/s/1gf9JZ8n#list/path=%2F

  9. 利用Metrics+influxdb+grafana构建监控平台

    https://blog.csdn.net/fishmai/article/details/51817429

  10. Asp.net Vnext TagHelpers

    概述 本文已经同步到<Asp.net Vnext 系列教程 >中] TagHelpers 是vnext中引入的新功能之一.TagHelper 的作用是类似于发挥在以前版本的 ASP.NET ...