CF17E Palisection 差分+manacher算法
题目大意:
给定一个串$S$,询问有多少对相交的回文子串
直接做的办法:
我们先考虑求出以$i$为结尾的串的数量,这个很好统计
之后,我们再求出所有包含了点$i$的回文串的数目
这个相当于在$i$的左边加上一个等差数列,右边同理可以统计出来
二次差分后维护这些东西就可以做到$O(n)$
听起来就很难打....
考虑反面
求出所有不相交的回文子串对的数目
只需要求出所有的回文串的数目
以及以点$i$为开头的串的数目,和以点$1 ... i - 1$为结尾的串的数目
这两个也十分统计
$O(n)$即可
注意不要被"#"给多余统计了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++) const int sid = ;
const int mod = ; inline void inc(int &a, int b) { a += b; if(a >= mod) a -= mod; }
inline void dec(int &a, int b) { a -= b; if(a < ) a += mod; }
inline int mul(int a, int b) { return 1ll * a * b % mod; } int n, m, ans;
char s[sid], t[sid];
int r[sid], st[sid], ed[sid]; int main() {
cin >> n;
scanf("%s", s + ); rep(i, , n)
t[++ m] = '#', t[++ m] = s[i];
t[++ m] = '#'; r[] = ;
int mr = , pos = ;
rep(i, , m) {
r[i] = min(mr - i + , r[pos + pos - i]);
while(i - r[i] > && t[i + r[i]] == t[i - r[i]]) r[i] ++;
if(i + r[i] - > mr) mr = i + r[i] - , pos = i;
st[i - r[i] + ] ++; st[i + ] --;
ed[i] ++; ed[i + r[i]] --;
inc(ans, r[i] / );
} int sum = ;
ans = 1ll * ans * (ans - ) / % mod;
rep(i, , m) {
st[i] += st[i - ];
ed[i] += ed[i - ];
if(t[i] != '#') {
dec(ans, mul(st[i], sum));
inc(sum, ed[i]);
}
} cout << ans << endl;
return ;
}
原来CF是不能开int128的...
CF17E Palisection 差分+manacher算法的更多相关文章
- CF17E Palisection(manacher)
题意 给出一个长度为N的字符串S,问S中有多少个回文子串对(i,j)使得i,j在S中的位置相交?(N<=2*106) 题解 #include<iostream> #include&l ...
- CF17E Palisection(manacher/回文树)
CF17E Palisection(manacher/回文树) Luogu 题解时间 直接正难则反改成求不相交的对数. manacher求出半径之后就可以差分搞出以某个位置为开头/结尾的回文串个数. ...
- manacher算法笔记
模板 [模板]manacher算法 不妨先只考虑如何求长度为奇数的回文串 记\(P[i]\)表示以\(i\)为中心最多向两边扩展几个字符,满足回文 如串\(ababa\), \(P[1]=0,P[2] ...
- HDU3068 回文串 Manacher算法
好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...
- 差分进化算法 DE-Differential Evolution
差分进化算法 (Differential Evolution) Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...
- manacher算法专题
一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 1089 最长回文子串 V2(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa ...
- 51nod1089(最长回文子串之manacher算法)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...
随机推荐
- jquery $.post() 向php传值 实现简单的二级联动
更多内容推荐微信公众号,欢迎关注: 1 其中selectid是一个下拉菜单的id $().ready(function () { $("#selectid").change(fun ...
- 11 The Go Memory Model go语言内置模型
The Go Memory Model go语言内置模型 Version of May 31, 2014 Introduction 介绍 Advice 建议 Happens Before 在发生之前 ...
- 试用Redis
Windows 10家庭中文版,运行于VirtualBox上的Ubuntu 18.04,Redis 4.0.10, Redis,久仰大名!因为没有从事互联网行业,所以一直没有使用过.近期找工作,也隐约 ...
- python面向对象(二)之封装
封装定义: 在程序设计中,封装(Encapsulation)是对具体对象的一种抽象,即将某些部分隐藏起来,在程序外部看不到,其含义是其他程序无法调用. 即"封装"就是将抽象得到的数 ...
- UFLDL 教程学习笔记(三)
教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ logstic regression是二分类的问题,如果想要 ...
- python_docx制作word文档
一.docx模块 Python可以利用python-docx模块处理word文档,处理方式是面向对象的.也就是说python-docx模块会把word文档,文档中的段落.文本.字体等都看做对象,对对象 ...
- 20165203实验四 Andriod程序设计
20165203实验四 Andriod程序设计 实验内容 安装 Android Stuidio 学习Android Stuidio调试应用程序 实验要求 1.没有Linux基础的同学建议先学习< ...
- Knockout.Js官网学习Demo(使用VS2012或者VS2013均可打开)
https://pan.baidu.com/s/1gf9JZ8n#list/path=%2F
- 利用Metrics+influxdb+grafana构建监控平台
https://blog.csdn.net/fishmai/article/details/51817429
- Asp.net Vnext TagHelpers
概述 本文已经同步到<Asp.net Vnext 系列教程 >中] TagHelpers 是vnext中引入的新功能之一.TagHelper 的作用是类似于发挥在以前版本的 ASP.NET ...