2726: [SDOI2012]任务安排

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 868  Solved: 236
[Submit][Status][Discuss]

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

时间有负数?!
 
状态方程张这模样的题一般就用斜率优化(f[i]=f[j]+(j+1...i+什么东西)*什么东西)
如何计算代价?
最烦的就是s了,于是可以提前计算s对后面造成的代价
{类似题目:http://www.cnblogs.com/candy99/p/6048599.html http://www.cnblogs.com/candy99/p/5968110.html}
f[i]=min{f[j]+s*(p[n]-p[j])+t[i]*(p[i]-p[j])}
: p是费用,t和p都处理前缀和
然后化啊化,得到:
j<k pj<pk t[i]>(f[k]-f[j])/(p[k]-p[j])-s时k更优
slope(x,y)>slope(y,z)时y不最优,下凸壳
p单增,但是t有负数不单调,所以要二分第一个slope(j,j+1)>=a[i]的j
 
然后还有一个问题,直接算slope会爆掉double的大小,所以手动去分数(是这个原因吧要不然我真不知道为什么WA了)
PS:我谜一般的看着数组中的元素为什么会自动改变然后突然意识到数组大小忘改了.......神秘的溢出竟然修改了前面的数组元素
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e6+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,s;
int q[N],head,tail;
ll t[N],p[N],f[N];
//inline double slope(int j,int k){
// return (double)(f[k]-f[j])/(double)(p[k]-p[j])-s;
//}
void dp(){
for(int i=;i<=n;i++){
int l=,r=tail;
// while(l<r){
// int mid=(l+r)>>1;
// if(slope(q[mid],q[mid+1])>=(double)t[i]) r=mid;
// else l=mid+1;
// }
while (l<r){
long long mid=(l+r)/;
if (f[q[mid+]]-f[q[mid]]>=(s+t[i])*(p[q[mid+]]-p[q[mid]])) r=mid;
else l=mid+;
}
int j=q[l];
f[i]=f[j]+t[i]*(p[i]-p[j])+s*(p[n]-p[j]);
// while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i)) tail--;
// q[++tail]=i;
while(head<tail&&(f[i]-f[q[tail]])*(p[q[tail]]-p[q[tail-]])<=(f[q[tail]]-f[q[tail-]])*(p[i]-p[q[tail]])) tail--;
q[++tail]=i;
}
printf("%lld",f[n]);
}
int main(){
//freopen("in.txt","r",stdin);
n=read();s=read();
for(int i=;i<=n;i++) t[i]=t[i-]+read(),p[i]=p[i-]+read();
dp();
}
 
 
 

BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]的更多相关文章

  1. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  2. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  3. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  4. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  5. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  6. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  8. [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算

    题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...

  9. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

随机推荐

  1. python初步学习-python模块之 commands

    commands 通过 os.popen() 执行 shell 命令,返回两个对象,一个是 状态码(Int).另一个为命令输出(str) commands.getoutput(cmd) 返回命令执行输 ...

  2. Ubuntu 14.04 + xRDP + Xfce 实现Windows远程桌面连接

    1. 安装xRDP及vncserver sudo apt-get install xrdp sudo apt-get install vnc4server tightvncserver 2. 安装Xf ...

  3. Web 前端开发规范文档

    通用规范: TAB键用两个空格代替(WINDOWS下TAB键占四个空格,LINUX下TAB键占八个空格). CSS样式属性或者JAVASCRIPT代码后加“;”方便压缩工具“断句”. 文件内容编码均统 ...

  4. 2016.5.24——Intersection of Two Linked Lists

    Intersection of Two Linked Lists 本题收获: 1.链表的输入输出 2.交叉链表:这个链表可以有交叉点,只要前一个节点的的->next相同即可. 题目:Inters ...

  5. PHP 中 int 和 integer 类型的区别

    半夜整理东西,发现一个以前没留意到的小问题. function show($id) : int { return $id; } function show($id) : integer { retur ...

  6. 01-Coredump核心转存&&Linux程序地址分析【转】

    转自:http://www.itwendao.com/article/detail/404132.html 目录(?)[-] 一Core Dump核心转存 二Linux程序地址分析 一Core Dum ...

  7. python基础--类的经典类vs新式类

    经典类VS新式类区别 1)写法新式类class Person(object):#new style 经典类class Persion: #classical style 2)调用父类 新式写法用sup ...

  8. vue+vuex+axios+echarts画一个动态更新的中国地图

    一. 生成项目及安装插件 # 安装vue-cli npm install vue-cli -g # 初始化项目 vue init webpack china-map # 切到目录下 cd china- ...

  9. centos7连接阿里云长时间连接不上

    一.手动修改网卡配置 手上有几台centos7的linux,当连接阿里云的ecs服务器时候长时间连接不上,最后失败的问题. 使用 -vvv参数到如下语句就卡着不动了 ssh -vvv XXX.XXX. ...

  10. 浮动元素垂直居中,bootstrap栅格布局垂直居中

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...