2726: [SDOI2012]任务安排

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 868  Solved: 236
[Submit][Status][Discuss]

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

时间有负数?!
 
状态方程张这模样的题一般就用斜率优化(f[i]=f[j]+(j+1...i+什么东西)*什么东西)
如何计算代价?
最烦的就是s了,于是可以提前计算s对后面造成的代价
{类似题目:http://www.cnblogs.com/candy99/p/6048599.html http://www.cnblogs.com/candy99/p/5968110.html}
f[i]=min{f[j]+s*(p[n]-p[j])+t[i]*(p[i]-p[j])}
: p是费用,t和p都处理前缀和
然后化啊化,得到:
j<k pj<pk t[i]>(f[k]-f[j])/(p[k]-p[j])-s时k更优
slope(x,y)>slope(y,z)时y不最优,下凸壳
p单增,但是t有负数不单调,所以要二分第一个slope(j,j+1)>=a[i]的j
 
然后还有一个问题,直接算slope会爆掉double的大小,所以手动去分数(是这个原因吧要不然我真不知道为什么WA了)
PS:我谜一般的看着数组中的元素为什么会自动改变然后突然意识到数组大小忘改了.......神秘的溢出竟然修改了前面的数组元素
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e6+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,s;
int q[N],head,tail;
ll t[N],p[N],f[N];
//inline double slope(int j,int k){
// return (double)(f[k]-f[j])/(double)(p[k]-p[j])-s;
//}
void dp(){
for(int i=;i<=n;i++){
int l=,r=tail;
// while(l<r){
// int mid=(l+r)>>1;
// if(slope(q[mid],q[mid+1])>=(double)t[i]) r=mid;
// else l=mid+1;
// }
while (l<r){
long long mid=(l+r)/;
if (f[q[mid+]]-f[q[mid]]>=(s+t[i])*(p[q[mid+]]-p[q[mid]])) r=mid;
else l=mid+;
}
int j=q[l];
f[i]=f[j]+t[i]*(p[i]-p[j])+s*(p[n]-p[j]);
// while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i)) tail--;
// q[++tail]=i;
while(head<tail&&(f[i]-f[q[tail]])*(p[q[tail]]-p[q[tail-]])<=(f[q[tail]]-f[q[tail-]])*(p[i]-p[q[tail]])) tail--;
q[++tail]=i;
}
printf("%lld",f[n]);
}
int main(){
//freopen("in.txt","r",stdin);
n=read();s=read();
for(int i=;i<=n;i++) t[i]=t[i-]+read(),p[i]=p[i-]+read();
dp();
}
 
 
 

BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]的更多相关文章

  1. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  2. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  3. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  4. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  5. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  6. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  8. [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算

    题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...

  9. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

随机推荐

  1. C# FileStream MemoryStream BufferedStream StreamReader StreamWriter

    FileStream读取文件 , array.Length);//读取流中数据把它写到字节数组中file.Close();//关闭流string str =Encoding.Default.GetSt ...

  2. Java与JS生成二维码

    1.二维码概念 二维码/二维条码是用某种特定的集合图形按一定规律在平面上(二维方向上)分布的黑白相间的图形记录数据符号信息的图片. 黑线是二进制的1,空白的地方是二进制的0,通过1.0这种数据组合用于 ...

  3. 【技巧总结】Penetration Test Engineer[3]-Web-Security(SQL注入、XXS、代码注入、命令执行、变量覆盖、XSS)

    3.Web安全基础 3.1.HTTP协议 1)TCP/IP协议-HTTP 应用层:HTTP.FTP.TELNET.DNS.POP3 传输层:TCP.UDP 网络层:IP.ICMP.ARP 2)常用方法 ...

  4. Fiddler是最强大最好用的Web调试工具

    Fiddler是最强大最好用的Web调试工具之一,它能记录所有客户端和服务器的http和https请求,允许你监视,设置断点,甚至修改输入输出数据. 使用Fiddler无论对开发还是测试来说,都有很大 ...

  5. 好用的工具---screen命令

    问 题场景:要在服务器上配置环境,但是我的电脑无法直接连到服务器上,通常要经过好几次ssh跳转.配环境需要设置好几个用户,这自然需要同时打开好几个连 接服务器的终端窗口,每个连接到服务器的终端窗口都要 ...

  6. unity 代码有调整,重新导出 iOS 最烦的就是 覆盖导出后项目不能打开

    unity  代码有调整,重新导出 iOS 最烦的就是 覆盖导出后项目不能打开,原因是 editor 里面的脚本,破坏了 Unity-iPhone.xcodeproj 里面的结构,具体是什么原因,也不 ...

  7. 美国部分科技公司创始及IPO信息

    作者:Ben.Z 时间:2018-04-19 做这份统计表格的目的是为了更好地了解当下美国的IT发展,搞清楚那些耳熟能详的名词的来源. 原文是用WPS统计的,本文仅展示截图. 创始人年龄分析: 1.上 ...

  8. Motan

    https://github.com/weibocom/motan/wiki/zh_userguide http://www.cnblogs.com/mantu/p/5885996.html(源码分析 ...

  9. plsql developer配置

    一:今天plsql developer连接 出问题了 ,Oracleclient没正确安装 0.连接vpn 1.环境变量:TNS_ADMIN = D:\worksoftware\oracleClien ...

  10. Baidu软件研发工程师笔试题整理

    Hadoop Map/Reduce Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别 ...