[BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)
对于点集$A$,$B$,闵可夫斯基和$C=\{(x1+x2,y1+y2)|(x1,x2)\in A,(y1,y2)\in B\}$。
由此可知,对于两个凸包$A$,$B$的闵可夫斯基和$C$满足,$C$中的向量是所有$A$中向量与$B$中向量的和的并集。可以证明,$C$也是一个凸包。
现在问题是要求,对于询问向量$\vec{d}$,是否存在$\vec{a}\in A$,$\vec{b}\in B$,使得$\vec{a}=\vec{b}+\vec{d}$。
移项得$\vec{d}=\vec{a}-\vec{b}$,发现这是$B$中所有向量取反后与$A$的闵可夫斯基和。于是问题转化为,求$A$与$-B$的闵可夫斯基和$C$,并快速判断某个向量是否在$C$内。
求闵可夫斯基和有一个线性算法,正确性不会证明。
先求出$A$和$B$的凸包,再取出凸包上所有的边,这些边显然都分别是已经按极角排好序的向量。
初始时$C$只有一个点$\vec{a1}+\vec{b1}$,其中$a1$,$b1$分别是$A$和$B$凸包中的第一个点。
接下来类似归并排序地,按极角序从小到大依次插入新向量并维护凸包。
最后,凸包的尾部可能会出现一些多余点,直接删除或再求一次凸包即可。
得到凸包$C$后,问题只剩快速判断一个点$P$是否在凸包$C$内了。
很简单,将凸包中点以相对于凸包第一个点的极角序排好,二分找到$P$在其中哪个位置,向量叉积即可判断。
总复杂度$O(n\log n)$
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,m,q,tot;
struct P{ ll x,y; }s,p[N],p1[N],p2[N],v1[N],v2[N],t[N],a[N];
P operator +(const P &a,const P &b){ return (P){a.x+b.x,a.y+b.y}; }
P operator -(const P &a,const P &b){ return (P){a.x-b.x,a.y-b.y}; }
ll operator *(const P &a,const P &b){ return a.x*b.y-a.y*b.x; }
ll len(P a){ return a.x*a.x+a.y*a.y; } bool cmp(const P &a,const P &b){ ll k=(a-s)*(b-s); return k ? k> : len(a-s)<len(b-s); } int Graham(P a[],int n){
rep(i,,n) t[i]=a[i];
rep(i,,n) if (t[i].x<t[].x || (t[i].x==t[].x && t[i].y<t[].y)) swap(t[],t[i]);
s=t[]; sort(t+,t+n+,cmp); int top=;
rep(i,,n){
while (top> && (t[top]-t[top-])*(t[i]-t[top-])<=) top--;
t[++top]=t[i];
}
rep(i,,top) a[i]=t[i];
return top;
} bool jud(P x){
P vx=x-p[];
if (vx*(p[tot]-p[])< || vx*(p[]-p[])>) return ;
int px=lower_bound(p+,p+tot+,x,cmp)-p-;
return (x-p[px])*(p[px%tot+]-p[px])<=;
} int main(){
freopen("bzoj5317.in","r",stdin);
freopen("bzoj5317.out","w",stdout);
scanf("%d%d%d",&n,&m,&q);
rep(i,,n) scanf("%lld%lld",&p1[i].x,&p1[i].y);
rep(i,,m) scanf("%lld%lld",&p2[i].x,&p2[i].y),p2[i].x=-p2[i].x,p2[i].y=-p2[i].y;
n=Graham(p1,n); m=Graham(p2,m);
rep(i,,n-) v1[i]=p1[i+]-p1[i]; v1[n]=p1[]-p1[n];
rep(i,,m-) v2[i]=p2[i+]-p2[i]; v2[m]=p2[]-p2[m];
p[]=p1[]+p2[]; tot=;
int l1=,l2=;
while (l1<=n || l2<=m)
tot++,p[tot]=p[tot-]+((l1<=n && (l2>m || (v1[l1]*v2[l2]>=))) ? v1[l1++] : v2[l2++]);
while (tot> && (p[tot]-p[tot-])*(p[]-p[tot-])<=) tot--;
s=p[]; P qs;
rep(i,,q) scanf("%lld%lld",&qs.x,&qs.y),printf("%d\n",jud(qs));
return ;
}
[BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)的更多相关文章
- BZOJ5317 JSOI2018部落战争(凸包)
即询问凸包是否有交.这显然可以直接求半平面交,但是复杂度O(q(n+m)),且没有什么优化空间. 更直接地表示,即相当于询问是否存在点a∈A,b∈B,使得a+d=b.移项,得到d=b-a.可以发现等式 ...
- 2019.02.21 bzoj5317: [Jsoi2018]部落战争(凸包+Minkowski和)
传送门 题意:qqq次询问把一个凸包整体加一个向量(x,y)(x,y)(x,y)之后是否与另外一个凸包相交. 思路:转化一下发现只要会求A+B={v⃗=a⃗+b⃗∣a⃗∈A,b⃗∈B}A+B=\{\v ...
- 【BZOJ5317】[JSOI2018]部落战争(凸包,闵可夫斯基和)
[BZOJ5317][JSOI2018]部落战争(凸包,闵可夫斯基和) 题面 BZOJ 洛谷 题解 很明显我们只需要两个凸包\(A,B\). 假设询问给定的方向向量是\(v\). 那么现在就是判断\( ...
- BZOJ 5317: [Jsoi2018]部落战争
传送门 写出式子,若存在 $a \in A$,$b \in B$,使得 $b+v=a$,那么此方案会产生冲突 即存在 $a \in A$,$b \in B$,使得 $v=a+(-b)$,设 $C=A+ ...
- 「JSOI2018」战争
「JSOI2018」战争 解题思路 我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在 \[ b\in B,(b+w)\in A \] 这里 \(A, B\) 表示凸包内部 ...
- BZOJ2150: 部落战争
题解: 把每个点拆成入点和出点,因为必须经过一次且只能经过一次.所以在两个点之间连一条上界=下界=1的边. 然后再s到每个入点连边,每个出点向t连边,点与点之间... 求最小流就可以过了... (感觉 ...
- BZOJ 2150: 部落战争 最大流
2150: 部落战争 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...
- BZOJ-2150部落战争(最小路径覆盖)
2150: 部落战争 Time Limit: 10 Sec Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- Linux基础-swap交换分区
任务:对一块15G大小的硬盘进行分区,主分区为5G,扩展分区10G,一个逻辑分区5G作为swap交换分区,并激活查看新的swap分区 第一步,建立的新的SCSI硬盘,开启Linux系统前添加一块大小为 ...
- 如何禁止Linux内核的-O2编译选项【转】
转自:http://blog.csdn.net/larryliuqing/article/details/8674274 http://lenky.info/2013/03/10/%E5%A6%82% ...
- avalonJS-源码阅读(一)
写angularJS源码阅读系列的时候,写的太垃圾了.一个月后看,真心不忍直视,以后有机会的话得重写.这次写avalonJS,希望能在代码架构层面多些一点,少上源码.多写思路. avalon暴露句柄方 ...
- C# Guid 16位 唯一
public static class GuidExtentions { /// <summary> /// 根据GUID获取16位的唯一字符串 /// </summary> ...
- mysql数据库查找类型不匹配
无意中看到10级学长的博客,提到了mysql数据库类型查找不匹配的问题,博客地址是:卢俊达 . 数据库中建表中会对每个属性进行类型划分,然后在查找数据库select时: MySQL 的文档 (Type ...
- 四B象限图
- MySQL学习笔记:regexp正则表达式
在MySQL中,模糊搜索的时候主要用两种方式: 1.like2.regexp + 正则表达式 性能优于like 正则表达式描述了一组字符串. 最简单的正则表达式是不含任何特殊字符的正则表达式.例如,正 ...
- Effective STL 学习笔记 Item 16:vector, string & C API
有时需要支持 C 的接口,但这并不复杂. 对于 vector 来讲, \(v[0]\) 的地址 \(\&v[0]\) 即可作为数组指针传递给 C API: 1: // Legacy C API ...
- HBase 入门笔记-数据落地篇
一.前言 关于数据落地方面,HBase官网也有相关介绍.本文主要介绍一下实际工作中涉及的数据存储方面的一些经验和技巧,主要涉及表rowkey设计.数据落地方案 二.表设计 相对于MySQL等关系型数据 ...
- CCF CSP 201612-2 工资计算
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201612-2 工资计算 问题描述 小明的公司每个月给小明发工资,而小明拿到的工资为交完个人所 ...