题意:有n个数,除了空集外,它们会形成2^n-1个子集,给你这些子集的和的结果,让你还原原来的n个数。

假设原数是3 5 16,

那么它们形成3 5 8 16 19 21 24,

那么第一轮取出开头的数(3),然后从当前最大的数(24)中减去它,然后必然会产生一个与其相等的数(21),将其一并删去(这个过程利用单调性,使用两个指针进行单调的从右向左的移动即可),然后将21进入下一轮的末尾……如此,3就是答案里的数。

下一轮变成 5 16 21……如此重复,每次序列长度减半,得到最终答案。

队友的代码:

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for (int i=(a);i<=(b);++i)
#define ROF(i,b,a) for (int i=(b);i>=(a);--i)
typedef long long LL;
int read(){
int x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') { if (ch=='-') f=-1; ch=getchar(); }
while (ch>='0'&&ch<='9') { x=x*10+ch-'0'; ch=getchar(); }
return x*f;
} const int MAXN=3000006;
queue<int> Q;
int n,m,q,a[MAXN],b[MAXN],c[MAXN];
void dfs(int x,int y){
if (x==n+1) { if (y) c[++q]=y; return; }
dfs(x+1,y); dfs(x+1,y+b[x]);
}
int main() {
int T=read();
while (T--) {
n=read(); m=(1<<n);
FOR(i,1,m-1) a[i]=read();
sort(a+1,a+m);
while (!Q.empty()) Q.pop();
int flag=1;
FOR(i,1,n) {
b[i]=a[1]; q=0;
int x=0,y=a[1];
ROF(j,m-1,2) {
if (!x)
if (!Q.empty()) x=Q.front(); else x=0;
if (a[j]==x) c[++q]=a[j],Q.pop(),x=0;
else Q.push(a[j]-y);
}
//FOR(j,1,q) printf("%d%c",c[j]," \n"[j==q]);
//printf("%d %d %d\n",Q.empty(),m/2-1,q);
if (!Q.empty()||q!=m/2-1) { flag=0; break; }
FOR(j,1,q) a[q+1-j]=c[j]; m>>=1;
}
if (flag)
FOR(i,1,n) printf("%d%c",b[i]," \n"[i==n]);
else printf("NO\n");
}
return 0;
} /*
*/

【推导】【单调性】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem B. Tribute的更多相关文章

  1. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

  2. 【动态规划】【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem B. Dissertation

    题意: 给定S1串,长度100w,S2串,长度1k.问它俩的LCS. f(i,j)表示S2串前i个字符,LCS为j时,最少需要的S1串的前缀长度.转移的时候,枚举下一个字符在S1的位置即可.(可以预处 ...

  3. 【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem A. The Catcher in the Rye

    一个区域,垂直分成三块,每块有一个速度限制,问你从左下角跑到右上角的最短时间. 将区域看作三块折射率不同的介质,可以证明,按照光路跑时间最短. 于是可以二分第一个入射角,此时可以推出射到最右侧边界上的 ...

  4. 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables

    题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...

  5. 【BFS】【最小生成树】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem G. We Need More Managers!

    题意:给你n个点,点带权,任意两点之间的边权是它们的点权的异或值中“1”的个数,问你该图的最小生成树. 看似是个完全图,实际上有很多边是废的.类似……卡诺图的思想?从读入的点出发BFS,每次只到改变它 ...

  6. 【状压dp】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem E. Guessing Game

    题意:给你n个两两不同的零一串,Alice在其中选定一个,Bob去猜,每次询问某一位是0 or 1.问你最坏情况下最少要猜几次. f(22...2)表示当前状态的最小步数,2表示这位没确定,1表示确定 ...

  7. 【线性基】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem A. XOR

    题意:给你一些数,问你是否能够将它们划分成两个集合,使得这两个集合的异或和之差的绝对值最小. 设所有数的异或和为S,集合A的异或和为A. 首先,S的0的位对答案不造成影响. S的最高位1,所对应的A的 ...

  8. 【推导】【构造】Petrozavodsk Summer Training Camp 2015 Day 2: Xudyh (TooSimple) Contest, Saturday, August 22, 2015 Problem G. Travelling Salesman Problem

    一个矩阵,每个位置有一个非负整数,一个人从左上走到右下,不能走重复的格子,问得到的最大权值. 当长宽不都为偶数时,必然能走遍所有格子,横着从左到右,从右到左(或是竖着走)走完即可. 当长宽都是偶数时, ...

  9. Petrozavodsk Winter Training Camp 2018

    Petrozavodsk Winter Training Camp 2018 Problem A. Mines 题目描述:有\(n\)个炸弹放在\(x\)轴上,第\(i\)个位置为\(p_i\),爆炸 ...

随机推荐

  1. js面向对象编程思想

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  2. Serv-U 的升级及数据备份和迁移【转】

    Serv-U 配置备份   在serv-u7.x及以上版本安装目录下,有一个文件Serv-U.Archive是serv-u的配置文件,有一个users文件夹是Serv-U的域和用户的信息,那么我们只需 ...

  3. JSP中page,request,session,application四个域对象区别

    page page指当前页面.只在一个jsp页面里有效 . page里的变量没法从index.jsp传递到test.jsp,只要页面跳转了,它们就不见了. pageContext 如果把变量放到pag ...

  4. docker stack 部署 rabbitmq 容器

    =============================================== 2018/5/13_第1次修改                       ccb_warlock == ...

  5. drop out为什么能够防止过拟合

    来源知乎: dropout 的过程好像很奇怪,为什么说它可以解决过拟合呢?(正则化) 取平均的作用: 先回到正常的模型(没有dropout),我们用相同的训练数据去训练5个不同的神经网络,一般会得到5 ...

  6. matlab转python

    最近在做把matlab代码转成python代码,没有用过matlab,python也只是局限于爬虫,所以.... matlab与python最大的不同是,matlab的下标是从1开始的,python和 ...

  7. SQL2008关于权限的解释

    在SQL2008中我自己创建的一个登录名,可是那个登录名只可以用来登录,对数据库的操作什么都不能,连读取数据库都不可以.因为权限不够,只要把登录名的属性打开点击“服务器角色”,把public和sysa ...

  8. sqlserver中的全局变量总结

    @@CONNECTIONS返回自上次启动 Microsoft? SQL Server? 以来连接或试图连接的次数.@@CPU_BUSY返回自上次启动 Microsoft? SQL Server? 以来 ...

  9. MP3 Fuzz学习

    这篇文章主要是学习一波MP3格式fuzz的知识.目录如下 0x0.MP3格式的构成 0x0.MP3格式的构成 MP3是一种通俗叫法,学名叫MPEG1 Layer-3.MP3是三段式的结构,依次由ID3 ...

  10. day9--paramiko模块

    志不坚者智不达 paramiko:在Linux链接其他机器,每台Linux机器都有一个SSHClient:Python自己也写了一个SSHClient,那么Python写paramiko创建SSHCl ...