【BZOJ2830/洛谷3830】随机树(动态规划)

题面

洛谷

题解

先考虑第一问。

第一问的答案显然就是所有情况下所有点的深度的平均数。

考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度为原先叶子\(+1\)的点。

那么新加入的叶子的深度的期望是未加入之前的期望+1,假设\(f_i\)为\(i\)个点的期望。

那么\(f_i=(f_{i-1}*({i-1})-f_{i-1}+2*(f_{i-1}+1))/i=f_{i-1}+2/i\)

含义就是平均的深度乘上点的个数等于深度总和,减去删去的点的深度,加入两个新的深度为原先点\(+1\)的点。

考虑第二问

不难想到一个状态\(f[i][j]\)表示拥有\(i\)个节点,深度为\(j\)的概率。

那么答案就是\(\sum_{i=0}^nf[n][i]*i\)

这个转移不难,我们根节点已经固定,并且它一定拥有左右子树,我们转移的时候分开考虑左右子树,然后再在根节点的位置合并,即

\[f[i][max(k,l)+1]\rightarrow f[j][k]*f[i-j][l]/(i-1)
\]

除掉\(i-1\)的原因是一开始我们直接把左右儿子都当成整棵树来看,所以最终合并的时候要把总方案除掉。

还有一种做法,大同小异,然而复杂度更优秀。

设\(f[i][j]\)表示\(i\)个叶子的树,深度至少为\(j\)的概率。

转移和上面的东西类似,容斥去重。

\[f[i][j]=\frac{1}{i-1}\sum f[k][j-1]*1+f[i-k][j-1]*1-f[i][j-1]*f[i-k][j-1]
\]

答案是\(\sum f[n][i]\)

#include<iostream>
#include<cstdio>
using namespace std;
int n,Q;
double ans,f[101][101];
int main()
{
cin>>Q>>n;
if(Q==1)
{
for(int i=2;i<=n;++i)
ans+=2.0/i;
printf("%.6lf\n",ans);
}
else
{
for(int i=1;i<=n;++i)f[i][0]=1;
for(int i=2;i<=n;++i)
for(int j=1;j<=i;++j)
for(int k=1;k<i;++k)
f[i][j]+=(f[k][j-1]+f[i-k][j-1]-f[k][j-1]*f[i-k][j-1])/(i-1);
for(int i=1;i<=n;++i)ans+=f[n][i];
printf("%.6lf\n",ans);
}
return 0;
}

【BZOJ2830/洛谷3830】随机树(动态规划)的更多相关文章

  1. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  2. BZOJ2830 & 洛谷3830:[SHOI2012]随机树——题解

    https://www.luogu.org/problemnew/show/P3830#sub   <-题面看这里~ https://www.lydsy.com/JudgeOnline/prob ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  8. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

  9. 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)

    这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...

随机推荐

  1. Activity启动过程中获取组件宽高的五种方式

    第一种:(重写Activity的onWindowFocusChanged方法) /** * 重写Acitivty的onWindowFocusChanged方法 */ @Override public ...

  2. ClassLoader.loadClass()与Class.forName()的区别

    ClassLoader.loadClass()与Class.forName()都是反射用来构造类的方法,但是他们的用法还是有一定区别的. 在讲区别之前,我觉得很有不要把类的加载过程在此整理一下. 在J ...

  3. hive对于lzo文件处理异常Caused by: java.io.IOException: Compressed length 842086665 exceeds max block size 67108864 (probably corrupt file)

    hive查询lzo数据格式文件的表时,抛 Caused by: java.io.IOException: Compressed length 842086665 exceeds max block s ...

  4. 实验五 Java网络编程及安全 实验报告 20135232王玥

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序与设计         班级:1352 姓名:王玥 学号:20135232 成绩:             指导 ...

  5. 《Spring 2之站立会议3》

    <Spring 2之站立会议3> 昨天,查找了本机的端口号,并对代码作进一步的了解. 今天,对我们项目的基本框架进行了了解,即主界面和各个分界面的基本架构: 遇到的问题,虽然了解了基本框架 ...

  6. 【CS231N】7、卷积神经网络

    一.疑问 1. assignments2 在代码文件FullyConnectedNets.ipynd 中,有代码如下: # Test the affine_forward function num_i ...

  7. python learning Exception & Debug.py

    ''' 在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因.在操作系统提供的调用中,返回错误码非常常见.比如打开文件的函数open(),成功时返 ...

  8. Firefox插件开发学习总结

    2018.06.14 我们小组最初只准备开发运行在google上的知乎插件,但我们经过调研发现还有一大部分用户是使用的火狐浏览器,所以我们也准备制作火狐插件.以下是我学习了部分火狐插件制作知识后的总结 ...

  9. 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (三) 全双工通信

    设计思路 Arduino Leonardo初始化为发送模式,发送完成后,立即切换为接收模式,不停的监听,收到数据后立即切换为发送模式,若超过一定时间还为接收到数据,则切换为发送模式. 树莓派初始化为接 ...

  10. Gradle入门(4):依赖管理

    在现实生活中,要创造一个没有任何外部依赖的应用程序并非不可能,但也是极具挑战的.这也是为什么依赖管理对于每个软件项目都是至关重要的一部分. 这篇教程主要讲述如何使用Gradle管理我们项目的依赖,我们 ...