BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

又是一道卡精度卡得我头皮发麻的题……

题面(……蜜汁改编版)

YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选\(K\)个小弟(\(N, K \le 2500\))。

想要成为大哥的小弟不是件容易事,必须要有一个举荐人才行,所以每个候选人\(i\)都有一个另一个候选人\(R_i\)作为举荐人,只有当举荐人\(R_i\)被大哥选为小弟时,候选人\(i\)才有可能被选。

每个候选人都有一个选取代价\(S_i\)和选取收益\(P_i\),请问大哥如何选取才能使单位代价的收益最大,即,使\(\frac{\sum P_i}{\sum S_i}\)最大?

题解

这道题也是个分数规划题!

二分答案\(mid\),如果有一种选取方案使得\(\frac{\sum P_i}{\sum S_i} > mid\),即存在比mid更优的答案,那么我们找到的\(\frac{\sum P_i}{\sum S_i}\)最大值一定大于\(mid\)。所以我们把\(\frac{\sum P_i}{\sum S_i}\)作为权值,跑一遍树上背包。

这种树上背包(\(n\)个点中取\(m\)个,取的点的父亲必须被取)有\(n^2\)的做法——在dfs序(前序)上dp。\(dp[i][j]\)表示dfs序中前\(i - 1\)个取\(j\)个的最大权值。

\(dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i][j] + val[seq[i]] - mid * cost[seq[i]]);\)

\(dp[i + sze[seq[i]]][j] = max(dp[i + sze[seq[i]]][j], dp[i][j]);\)

(seq[i]表示序列中的第i个,val是收益,cost是代价)

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 2505, INF = 0x3f3f3f3f;
int n, m, val[N], cost[N], adj[N], nxt[N];
int seq[N], idx, sze[N];
double l, r = 10000, mid, dp[N][N]; void dfs(int u){
seq[++idx] = u, sze[u] = 1;
for(int v = adj[u]; v; v = nxt[v])
dfs(v), sze[u] += sze[v];
}
bool check(){
for(int i = 1; i <= idx + 1; i++)
for(int j = 0; j <= m; j++)
dp[i][j] = -INF;
dp[1][0] = 0;
for(int i = 1; i <= idx; i++)
for(int j = 0; j <= m; j++){
dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i][j] + val[seq[i]] - mid * cost[seq[i]]);
dp[i + sze[seq[i]]][j] = max(dp[i + sze[seq[i]]][j], dp[i][j]);
}
return dp[idx + 1][m] > -1e-9;
} int main(){ read(m), read(n);
m++;
for(int i = 1, fa; i <= n; i++){
read(cost[i]), read(val[i]), read(fa);
nxt[i] = adj[fa], adj[fa] = i;
}
dfs(0);
while(abs(r - l) > 1e-5){
mid = (l + r) / 2;
if(check()) l = mid;
else r = mid;
}
printf("%.3lf\n", (l + r) / 2); return 0;
}

BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划的更多相关文章

  1. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  2. bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 0/1分数规划裸题. #include<iostream> #includ ...

  3. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

  4. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  5. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  6. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  7. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  8. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  9. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

随机推荐

  1. 第十三次ScrumMeeting博客

    第十三次ScrumMeeting博客 本次会议于12月3日(六)21时30分整在3公寓725房间召开,持续20分钟. 与会人员:刘畅.辛德泰.张安澜.赵奕. 1. 每个人的工作(有Issue的内容和链 ...

  2. HotSpot JVM 常用配置设置

    本文讨论的选项是针对HotSpot虚拟机的. 1.选项分类及语法 HotspotJVM提供以下三大类选项: 1.1.标准选项 这类选项的功能是很稳定的,在后续版本中也不太会发生变化. 运行java或者 ...

  3. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  4. 找"1"

    题目:给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的次数. 要求:1.写一个函数f(N),返回1到N之间出现“1”的个数.例如f(12)=5. 2.在32位整数范围内 ...

  5. Structs2笔记①--structs的背景、structs2框架的意义、第一个helloworld

    Struts2的背景 由出色稳定的框架struts1和webwork框架整合而来的 吸取了两大框架的优点 提高了开发的效率和规范性 更好的实现了MVC架构 解除了与servlet的强耦合性 使用str ...

  6. Matlab图像匹配问题

    已知一个任意形状,查找在大图像中最接近的形状位置. 输入:一个小图形状和一张大图 输出:最接近的形状在大图中的位置 假设: (1)已知形状与目标形状有一定的形变. (2)形状与大图像均为二值图像,图中 ...

  7. 数据结构复习笔记(ADT栈/LIFO表)

    栈是一种特殊的表,只在表首进行插入和删除操作,表首称之为栈顶,表尾称为栈底:栈的核心原则是先进后出,简称Last In First Out(LIFO表):常用的运算有:1.是否为空栈判断:2.栈是否满 ...

  8. 循环队列的C语言实现

    生活中有很多队列的影子,比如打饭排队,买火车票排队问题等,可以说与时间相关的问题,一般都会涉及到队列问题:从生活中,可以抽象出队列的概念,队列就是一个能够实现“先进先出”的存储结构.队列分为链式队列和 ...

  9. 调整Linux的最大文件打开数

    要调整一下Linux的最大文件打开数,否则squid在高负载时执行性能将会很低.另外,在Linux下面部署应用时,有时候会遇上 Socket/File:Can’t open so many files ...

  10. build.xml

    下载ant 解压ant 后设置ANT_HOME, PATH中添加ANT_HOME目录下的bin目录(如:ANT_HOME:,PATH:D:\apache-ant-1.9.2%ANT_HOME%\bin ...